Detectors for a Linear Collider

Joachim Mnich
DESY

Lyon, March 25th, 2008
The International Linear Collider (ILC)
- Status of the project
- Physics motivation
- Impact on detector design
- The detector concepts

Detector R&D for key components
- Vertex detectors
- Tracking
- Calorimetry
- Towards larger prototypes

Conclusions & Outlook
The International Linear Collider

- Electron-positron collider
 - centre-of-mass energy up to 1 TeV
 - centre-of-mass energy
 - luminosities > 10^{34}/cm2/s

- The next large High Energy Physics project (after the LHC)

- Designed in a global effort

- Accelerator technology:
 supra-conducting RF cavities

- Elements of a linear collider:
The International Linear Collider

- International organisation:
 - Global Design Effort (GDE), started in 2005
 - Chair: Barry Barish
 - representatives from Americas, Asia and Europe
 - all major laboratories and many people contributing
The International Linear Collider

- 2006: Baseline Configuration Document

Layout of the machine:

- 2 \times 250 \, \text{GeV}
- upgradable to 2 \times 500 \, \text{GeV}
- 1 interaction region
- 2 detectors (push-pull)
- 14 mrad crossing angle

Cost estimate:

4.87 \, \text{G$} \, \text{shared components}
+ 1.78 \, \text{G$} \, \text{site-dependent}
= 6.65 \, \text{G$} \ (= 5.52 \, \text{G€})

+ 13000 \, \text{person years}
The International Linear Collider

Next milestones:
- two stage Technical Design Phase (TDP I & II) as proposed by GDE

TDP I until 2010:
- concentrate on main technical and cost risks
 main linac, gradient, electron cloud, conventional facilities
 be prepared when LHC results justify the programme
- detectors: LOIs by March 2009
 update physics performance

TDP II until 2012:
- complete technical design
 siting plan or process
- detectors: react to LHC results
 complete technical designs

J. Mnich, Detectors for a Linear Collider, Lyon, March 2008
ILC Physics Motivation

- ILC will complement LHC discoveries by precision measurements

- Here just two examples:

1) There is a Higgs, observed at the LHC
 - e^+e^- experiments can detect Higgs bosons without assumption on decay properties
 - Higgs-Strahlungs process (à la LEP)

 - identify Higgs events in $e^+e^- \rightarrow ZH$ from $Z \rightarrow \mu\mu$ decay

 - count Higgs decay products to measure Higgs BRs
 - and hence (Yukawa)-couplings

J. Mnich, Detectors for a Linear Collider, Lyon, March 2008
ILC Physics Motivation

- Measure Higgs self-couplings $e^+e^- \rightarrow ZHH$ to establish Higgs potential

 Note: small signal above large QCD background

2) There is NO Higgs (definite answer from LHC!)

- something else must prevent e.g. WW scattering from violating unitarity at $O(1 \text{ TeV})$
- strong electroweak symmetry breaking?

 → study $e^+e^- \rightarrow WW\nu\nu$, $Wze\nu$ and $ZZee$ events

- need to select and distinguish W and Z bosons in their hadronic decays!

 BR ($W/Z \rightarrow \text{hadrons}) = 68\% / 70\%$

- Many other physics cases: SM, SUSY, new phenomena, …

Need ultimate detector performance to meet the ILC physics case
Impact on Detector Design

- **Vertex detector:**
 - e.g. distinguish c- from b-quarks
 - goal impact parameter resolution
 \[\sigma_{r\phi} \approx \sigma_z \approx 5 \oplus 10/(p \sin \Theta^{3/2}) \text{ } \mu m \]
 3 times better than SLD
 - small, low mass pixel detectors, various technologies under study
 \(O(20\times20 \text{ } \mu m^2) \)

- **Tracking:**
 - superb momentum resolution
 to select clean Higgs samples
 - ideally limited only by \(\Gamma_z \)
 \[\rightarrow \Delta(1/p_T) = 5\cdot10^{-5} \text{ } /\text{GeV} \]
 (whole tracking system)
 3 times better than CMS

Options considered:
- Large silicon trackers (à la ATLAS/CMS)
- Time Projection Chamber with \(\approx 100 \text{ } \mu m \) point resolution
 (complemented by Si–strip devices)
Impact on Detector Design

- **Calorimeter:**
 distinguish W- and Z-bosons in their hadronic decays
 → $30\%/\sqrt{E_{\text{jet}}}$ jet resolution!

 2 times better than ZEUS

- **WW/ZZ → 4 jets:**

 → Particle Flow or Dual Readout calorimeter
Detector Challenges at the ILC

- Bunch timing:
 - 5 trains per second
 - 2820 bunches per train
 separated by 307 ns
 - no trigger
 - power pulsing
 - readout speed
- 14 mrad crossing angle
- Background:
 - small bunches
 - create beamstrahlung
 → pairs

background not as severe as at LHC but much more relevant than at LEP
Four detector concepts are being investigated
- GLD (Global Large Detector)
- LDC (Large Detector Concept)
- SiD (Silicon Detector)
- 4th concept

Merging into one concept:
(ILD) International Large Detector

Summer 2006: Detector Outline Documents (DOD)
evolving documents, detailed description

Summer 2007: Reference Design Reports (RDR)
comprehensive detector descriptions,
along with machine RDR

Prepared by international study groups
Detector Concepts

- **GLD**
 - TPC tracking
 - large radius
 - particle flow calorimeter
 - 3 Tesla solenoid
 - scint. fibre μ detector

- **LDC**
 - TPC tracking
 - smaller radius
 - particle flow calorimeter
 - 4 Tesla solenoid
 - μ detection: RPC or others

Both concepts are rather similar now merging into one (ILD)
- **SiD**
 - silicon tracking
 - smaller radius
 - high field solenoid (5 Tesla)
 - scint. fibre / RPC μ detector

- **Silicon tracker**

- **Magnet**
 - high field
 - but smaller volume
Detector Concepts

- **4th concept**
 - TPC
 - multiple readout calorimeter
 - iron-free magnet, dual solenoid
 - muon spectrometer (drift tubes)

- **Dual solenoid**
 - iron return yoke replaced by second barrel coil and endcap coils

Average field seen by μ:

$$\langle B \rangle \approx 1.5 \, \text{T}$$

$$\langle |B| \rangle \approx 3 \, \text{Tm}$$
Detector Concept and R&D efforts

- R&D efforts for key detector elements
- Overlap with detector concepts:

<table>
<thead>
<tr>
<th></th>
<th>GLD</th>
<th>LDC</th>
<th>SID</th>
<th>4th concept</th>
<th>Detector R&D collaborations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Tracking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- TPC</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>LCTPC</td>
</tr>
<tr>
<td>- Silicon</td>
<td>*</td>
<td>*</td>
<td>X</td>
<td>*</td>
<td>SILC</td>
</tr>
<tr>
<td>Calorimetry:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Particle Flow</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>CALICE</td>
</tr>
<tr>
<td>- Multiple Readout</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>- Forward region</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>FCAL</td>
</tr>
</tbody>
</table>

* silicon forward and auxiliary tracking also relevant for other concepts
Vertex Detector

- **Key issues:**
 - measure impact parameter for each track
 - space point resolution $< 5 \mu m$
 - smallest possible inner radius $r_i \approx 15 \, \text{mm}$
 - transparency: $\approx 0.1\% \, X_0$ per layer
 $= 100 \, \mu \text{m}$ of silicon
 - stand alone tracking capability
 - full coverage $|\cos \Theta| < 0.98$
 - modest power consumption $< 100 \, \text{W}$

- Five layers of pixel detectors
 - plus forward disks
 - pixel size $O(20 \times 20 \, \mu \text{m}^2)$
 - 10^9 channels

- **Note:** wrt. LHC pixel detectors
 - $1/5 \, r_i$
 - $1/30$ pixel size
 - $1/30$ thickness
Critical issue is readout speed:
- Inner layer can afford $O(1)$ hit per mm2 (pattern recognition)
 - once per bunch = 300 ns per frame too fast
 - once per train ≈ 100 hits/mm2 too slow
 - 20 times per train ≈ 5 hits/mm2 might work
 - 50 µs per frame of 10^9 pixels!

→ readout during bunch train (20 times)
or store data on chip and readout in between trains
e.g. ISIS: In-situ Storage Image Sensor

- Many different (sensor)-technologies under study
 - CPCCD, MAPS, DEPFET, CAPS/FAPS, SOI/3-D,
 - SCCD, FPCCD, Chronopixel, ISIS, ...
 → Linear Collider Flavour Identification (LCFI) R&D collaboration

- Below a few examples

- Note: many R&D issues independent of Si-technology
 (mechanics, cooling, ...)
CP CCD

- CCD
 - create signal in 20 µm active layer
 - etching of bulk material to keep total thickness ≤ 60 µm
 - low power consumption
 - but very slow

→ apply column parallel (CP) readout

- Second generation CP CCD designed to reach 50 MHz operation
MAPS and DEPFET

- CMOS Monolithic Active Pixel detectors
 - standard CMOS wafer integrating all functions
 - no bonding between sensor and electronics
 - e.g. Mimosa chip

- DEPFET: DEPleted Field Effect Transistor
 - fully depleted sensor with integrated pre-amplifier
 - low power and low noise
Vertex Detector Support

- Mechanical support structure
 goal 0.1% X_0 per layer

- Example:
 - Reticulated Vitreous Carbon (RVC)
 - or Silicon Carbide SiC foams
 both good thermal match to Si

 $1.5 \text{ mm RVC foam} + 2\times25 \text{ µm silicon}$
 $= 0.09\% \ X_0$

 $1.5 \text{ mm SiC foam} + 25 \text{ µm silicon}$
 $= 0.16\% \ X_0$ (reducible, less dense foam) achieved

- can be adopted to all detector technologies
Silicon Tracking

- The SiD tracker:
 - 5 barrel layers
 - $r_i = 20\,\text{cm}$
 - $r_o = 125\,\text{cm}$
 - 10 cm segmentation in z
 - short sensors
 - measure ϕ only

- endcap disks
 - 5 double disk per side
 - measure r and ϕ

- critical issue:
 - material budget
 - (support, cooling, readout)
 - goal: 0.8% X_0 per layer

J. Mnich, Detectors for a Linear Collider, Lyon, March 2008

Material budget complete tracking system

- $10\% \, X_0$
- beam pipe
- + main tracker
- + VTX
Silicon Tracking

- Alternative design: long ladder
 - Silicon tracking for the Linear Collider (SiLC) collaboration
 - for all-silicon tracker
 or silicon envelope (→TPC)

- Development of low noise electronics
 - amplification & pulse shaping
 - passive cooling
 - exploit low duty cycle

Prototype modules:

- 3 × CMS
- 10 × GLAST
Time Projection Chamber

- GLD, LDC and 4th: high resolution TPC as main tracker
 - 3 – 4 m diameter
 - ≈ 4.5 m length
 - low mass field cage
 - $3\% \times X_0$ barrel
 - $< 30\% \times X_0$ endcap
 - ≈ 200 points/track
 - $\approx 100\,\mu$m single point res.
 - $\Delta(1/p_T) = 10^{-4} /\text{GeV}$
 (10 times better than LEP!)

- Complemented by Forward Tracking
 - endcap between TPC and ECAL
 - Si strip, straw tube, GEM-based, …
 are considered

- TPC development performed in LCTPC collaboration
Time Projection Chamber

- New concept for gas amplification at end flanges:
 Replace proportional wires by Micro Pattern Gas Detectors (MPGD)

- GEM or MicroMegas
 - finer dimensions
 - two-dimensional symmetry
 \[\rightarrow \text{no E} \times \text{B effects} \]
 - only fast electron signal
 - intrinsic suppression of ion backdrift

J. Mnich, Detectors for a Linear Collider, Lyon, March 2008
Principle of MPGD based TPC established many small scale prototype experiments over the last \(\approx 5 \) years

- cosmics, testbeam
- magnetic field

under construction for experiments (MICE, T2K)

Example:

Single point resolution \(O(100 \, \mu m) \) established in
- small scale prototypes
- high magnetic fields
Time Projection Chamber

- Low mass fieldcage
 - large prototype under construction
 - using composite material

- Electronics
 - few 10^6 channels on endplate (ILD)
 - low power to avoid cooling

- two development paths:
 - FADC based on ALICE ALTRO chip
 - and TDC chips

\[\approx 1\% \, X_0 \]
TPC versus Silicon Tracking

- **TPC**
 - 200 space points (3-dim) \(\rightarrow\) continuous tracking, pattern recognition
 - low mass easy to achieve (barrel)

- **Silicon tracking**
 - better single point resolution
 - fast detector (bunch identification)
Silicon TPC Readout

- Combine MPGD with pixel readout chips
- 2-d readout with
 - Medipix2 0.25 µm CMOS
 - 256×256 pixel
 - 55×55 µm²

- Medipix (2-d) → TimePix (3-d)
- 50 - 150 MHz clock to all pixel
- 1st version under test

- Will eventually lead to
 - TPC diagnostic module
 - cluster counting to improve dE/dx
Calorimetry

- The paradigm of Particle Flow Algorithm (PFA) for optimum jet energy resolution:
 - try to reconstruct every particle
 - measure charged particles in tracker
 - measure photons in ECAL
 - measure neutral hadrons in ECAL+HCAL
 - use tracker + calorimeters to tell charged from neutral

- Jet resolution
 \[\sigma = \sigma_{\text{charged}} \oplus \sigma_{\text{photons}} \oplus \sigma_{\text{neutral}} \oplus \sigma_{\text{confusion}} \]

- confusion term arises from misassignment, double counting, overlapping clusters, …

- minimizing confusion term requires highly granular calorimeter both ECAL and HCAL

- average visible energy in a jet
 - \(\approx 60\% \) charged particles
 - \(\approx 30\% \) photons
 - \(\approx 10\% \) neutral hadrons

J. Mnich, Detectors for a Linear Collider, Lyon, March 2008
Calorimetry

- CALICE collaboration (Calorimeter for the Linear Collider Experiment)
 > 30 institutes from > 10 countries

 - performs R&D effort to validate the concept and design calorimeters for ILC experiments

- GLD, LDC, SID concepts based on PFA calorimeters

- ECAL:
 - SiW calorimeter
 - 23 X_0 depth
 - 0.6 X_0 – 1.2 X_0 long. segmentation
 - 5×5 mm2 cells
 - electronics integrated in detector

- Alternative:
 W + Scintillating strips (GLD)
Calorimetry

- HCAL:
 2 options under consideration

- Analogue Scintillator Tile calorimeter
 - moderately segmented $3 \times 3 \text{ cm}^2$
 - use SiPM for photo detection

- Gaseous Digital HCAL
 - finer segmentation $1 \times 1 \text{ cm}^2$
 - binary cell readout
 - based on RPC, GEM or μMegas detectors
Calorimeter

- CALICE Testbeam at CERN (2006/07)

ECAL 18×18 cm²
- Si cells of 1×1 cm²
- (216 cells per layer)

HCAL 100×100 cm²
- scint.tiles of 3×3, 6×6, 12×12 cm²
- (216 tiles per layer)

TCMT 100×100 cm²
- scint.strips X or Y of 5×100 cm²
- (20 strips per layer)

Tail Catcher - Muon Tracker
Calorimeter

- CALICE Testbeam at CERN (2006/07)

- CALICE prototype now moving to FNAL, start test beam in summer 2008
Calorimeter

- Simulation of an ILC event

Event display to illustrate granularity

$\rho \rightarrow \pi^+ \pi^0$
Dual Readout Calorimeter

- **4th concept**
 - calorimetry based on dual/triple readout approach
 - complementary measurements of showers reduce fluctuations

- **Fluctuations of local energy deposits** → **Fine spatial sampling with SciFi every 2 mm**

- **Fluctuations in electromagnetic fraction of shower energy** → **clear fibres measure only EM component by Cerenkov light of electrons**
 - \(E_{th} = 0.25 \text{ MeV} \)

 Dual Readout Module (DREAM) in testbeam at CERN

- **Binding energy losses from nuclear break-up** → **try to measure MeV neutron component of shower**
 - (history or Li/B loaded fibres)

- **Like SPACAL (H1)**

- **Like HF (CMS)**

- **Triple readout**
DREAM testbeam:
- measure each shower twice

\[
\begin{align*}
 (e/h)_C &= \eta_C \approx 5 \\
 (e/h)_S &= \eta_S \approx 1.4 \\
 C &= \left[f_{em} + (1 - f_{em})/\eta_C\right]E \\
 S &= \left[f_{em} + (1 - f_{em})/\eta_S\right]E \\
 \therefore C/E &= 1/\eta_C + f_{em}(1 - 1/\eta_C)
\end{align*}
\]
Dual Readout Calorimeter

- From DREAM to an ILC calorimeter:

DREAM module

3 scintillating fibers
4 Cerenkov fibers

ILC-type module

2mm W, Pb, or brass plates;
fibers every ~2 mm

(Removes correlated fiber hits)
Forward Calorimetry

- Forward calorimeters needed
 - LumCal: precise luminosity measurement
 precision < 10^{-3}, i.e. comparable to LEP or better
 - BeamCal: beam diagnostics & luminosity optimisation

- Detector technology: tungsten/sensor sandwich
- Example: LDC design for zero cross angle
 to be adapted for 14 mrad ILC design
BeamCal

- **Challenges:**
 - \(\approx 15000 \, e^+e^- \) pairs per BX in MeV range, extending to GeV
 - total deposit \(O(10 \, \text{TeV})/\text{BX} \)
 - \(\approx 10 \, \text{MGy} \) yearly rad. dose

- identification of single high energy electrons to veto two-photon bkgd.

- **Requires:**
 - rad. hard sensors (diamond)
 - high linearity & dynamic range
 - fast readout (307 ns BX interval)
 - compactness and granularity
Forward Calorimetry

- Sensors tests at DALINAC (Darmstadt) current 1 – 100 nA (10 nA ≈ kGy/h)

 ![Diagram](image)

- **Diamond sensor after ≈ 7 MGy**

- **Alternative sensor materials**
 - GaAs
 - SiC
 - Radiation hard silicon

 ![Graph](image)
Muon Detectors

- GLD, LDC & SiD have muon detection only: RPC, scint. fibre detector momentum in central tracker
- 4th concept:
 - muon spectrometer between coils
 - high precision drift tubes

- low p_T-threshold for muons
- excellent π/μ separation
 also exploiting multiple readout calorimeter
Disclaimer:
- all in early design phase
- comparison difficult
- assume that R&D is successful and large scale detectors will keep performance

- A few DOD plots on performance from simulation studies

4th concept:
- muon spectrometer
 \[\sigma(1/p_T) \approx 4 \cdot 10^{-4} /\text{GeV} \]
Detector Performance

- **SiD Tracking:**
 - 143 GeV selectron at 1 TeV mass measurement from end point
 - 0.1% beam energy spread
 - 100 MeV error not limited by tracker

- **GLD calorimetry:**
 - test of PFA with Z-pole events
 - $Z \rightarrow \text{hadrons}$
 - 38% mass resolution improvements are still possible
Detector R&D in Europe

- Next step:
 from small scale proof-of-principle experiments
to larger scale prototypes

- Example:
 the EUDET programme in Europe
 - improvements of infrastructures for
 larger scale detector prototypes
 (not only ILC)
 - devised in close cooperation with the
 international R&D collaborations

- Transnational Access:
 - support for (European) groups
 - DESY testbeam
 - usage of EUDET infrastructures

- Project started in 2006
 for 4 years duration

- More information at www.eudet.org
Detector R&D in Europe

European infrastructure projects are based on three pillars:

- Detector R&D Network:
 - Information exchange and intensified collaboration
 - Common simulation and analysis framework
 - Validation of simulation
 - Deep submicron radiation-tolerant electronics

- Test Beam Infrastructure:
 - Large bore magnet
 - Pixel beam telescope

- Calorimeter:
 - ECAL
 - HCAL
 - Very Forward Calorimeter
 - FE Electronics and Data Acquisition System

Activities split up into several tasks:

- Detector R&D Network:
 - Information exchange and intensified collaboration
 - Common simulation and analysis framework
 - Validation of simulation
 - Deep submicron radiation-tolerant electronics

- Test Beam Infrastructure:
 - Large bore magnet
 - Pixel beam telescope

- Calorimeter:
 - ECAL
 - HCAL
 - Very Forward Calorimeter
 - FE Electronics and Data Acquisition System
The EUDET Map

- EUDET partners
- EUDET associates

Novosibirsk
Protvino
ITEP
MPHI
MSU
Obninsk

KEK (Japan)
Dalian (China)
Beam Telescope

- 1st version of pixel beam telescope:
 - analogue readout, reduced speed
 - tested & commissioned at DESY
 - now in CERN testbeam
- 2nd version in preparation
 - digital readout

- Performance:
 - test with DEPFET detectors
 - 3.4 µm resolution (intrinsic + telescope)
 - in good agreement with expected DEPFET resolution (3 µm)
- **Fieldcage design**
 based on light small prototype TPC

- **Prototype electronics**
 - FADC based on ALTRO
 - TDC type readout

- **Well defined interfaces to readout plane**
 - mechanics
 - electronics

- **Dimensions:**
 - 60 cm length
 - 80 cm diam.

- **Few 1000 channels under construction**

- **TPC in PCMAG**

Both, with pad and Si readout
Calorimeter

- Design of the EUDET module
 - ECAL (see right)
 - and HCAL

- Design and prototypes of readout ASICs
 - ECAL, DHCAL & AHCAL

DHCAL board
Transnational Access

- Call for applications
 - see advertisement in CERN courier

- EUDET can supply travel funds
 - for DESY testbeam
 - for use of EUDET infrastructures (beam telescope etc.)

- Conditions & requirements:
 - European institute
 - not from country of infrastructure

- send short scientific proposal to Joachim.Mnich@desy.de

- + some forms to fill …

TO APPLY FOR EC FUNDED ACCESS

visit our web site http://www.eudet.org to get more information about the modalities of application.
EUDET Summary

- EUDET is an EU funded infrastructure programme for detector R&D
 - well defined programme
 - embedded in international detector R&D collaborations such as CALICE, LCTPC etc.

- Provides additional funds for European institutes
 - to help in the next phase of ILC detector R&D from small to larger prototypes

- Even more important
 - EUDET fertilises collaboration between institutes („community building“)
 - EUDET can help to raise additional funds at national agencies

- Can provide some support for other European groups
 → Transnational Access

- EUDET is now at mid-term
 - project is on track with major milestones achieved
 - more exciting work ahead of us
 - still open for contributions from new interested groups

More information at www.eudet.org
Conclusion & Outlook

- ILC: 500 → 1000 GeV Linear Collider
 next large collider project

- Requires detectors with unprecedented performances
 - challenges different than at the LHC

- 4 (now 3) detector concepts under development
- R&D on detector technologies
 - candidate technologies
 - identified & verified in small scale experiments

- Many questions still to be answered

- Next steps:
 - engineering designs for machine and detectors
 - detector R&D move to larger scale prototypes
 - requires intensified international collaboration

- Need to increase efforts to have ILC and two detectors ready next decade

Simulated ee → ZZ