The Large Hadron Collider LHC A New Era in Particle Physics

Joachim Mnich DESY

50th Anniversary Particle and Nuclear Physics at KIT

> Karlsruhe December 14, 2010

Outline

- The Large Hadron Collider
- The Experiments
- LHC physics
- First beams & collisions
- 2010 results*
- Plans & prospects

*results mostly from open LHCC session Nov 17, 2010

The Large Hadron Collider (LHC)

CMS

The Large Hadron Collider (LHC)

- Proton-proton collider in the former LEP tunnel
- The LHC <u>uniquely</u> combines the two most important virtues of HEP experiments:
 - 1. Highest ever energy per collission

up to 14 TeV in the pp-system cf. Tevatron at 2 TeV

2. High luminosity

up to 10³⁴/cm²/s

4 experiments:

ATLASlarge multi-purpose detectorCMSlarge multi-purpose detectorLHCbspecialised on b-physicsALICEspecialised for heavy ion
collisions

The Large Hadron Collider (LHC)

LHC time table:

- Early 1980's: first ideas about a multi-TeV proton collider at CERN
 - Oct 1990: ECFA workshop on LHC in Aachen
- 16 Dec 1994: CERN council approves the LHC
 - Feb 1996: approval of ATLAS and CMS
 - Apr 1998: start civil engineering
 - 7 Mar 2005: first dipole magnet installed
- 26 Apr 2007: last dipole installed
- 10 Sep 2008: first circulating beams
 - Oct 2009: first pp-collisions
 - Mar 2010: first collissions at 7 TeV

The LHC Project: Dipoles

First dipole prototype reached 8.73 Tesla on April 14, 1994

Last of 1232 dipoles lowered on April 26, 2007

and the second second

The LHC Today

And the

First Beams & Collisions

Beam Splash Events

Page 9

Courtesy of ATLAS

The Accident

Major set-back on September 19, 2008

- bad connection between two magnets
- thermal runaway
- light arc between magnets destroyed a He vessel
- shock wave in tunnel
- **Consequences:**
 - delayed first collisions by 1 year
 - max. beam energy 3.5 TeV
 - 1 year shutdown needed to stabilize magnet interconnects

53 magnets to be repaired & reinstalled

Joachim Mnich | LHC - A New Era in Particle Physics | 50th AnniVersary KCETA |

The ATLAS Experiment

A Toroidal LHC ApparatuS

ATLAS in a nutshell:

- Large air toroid with μ chambers
- HCAL: steel & scintillator tiles
- ECAL: LAr
- Inner solenoid (2 T)
- Tracker: Si-strips & straw tubes (TRD)
- Si-pixel detector 10⁸ channels
 - 15 μm resolution

Joachim Mnich | LHC - A New Era in Particle Physics | 50th AnniVersary KCETA |

December 14, 2010 | Page 12

ATLAS with inner Detectors

The CMS Experiment

Compact Muon Solenoid

MUON CHAMBERS

TRA CKER

RETURN YOKE

CRYSTAL ECAL

HCAL

CMS

CMS in a nutshell:

- 4 T solenoid
- μ chambers in iron yoke
- HCAL: copper & scintillator
- ECAL: PbWO₄ crystals
- All Si-strip tracker
 220 m², 10⁷ channels
- Si-pixel detector
 - similar to ATLAS

Total weight : 12,500t. Overall diameter : 15.00m Overall length : 21.60m Magnetic field : 4 Tesla

SUFERCON DUCTING

COIL

FORMARD

CALORMETER

CMS: Compact Muon Solenoid

Beampipe in CMS

MING

- Forward spectrometer for B-physics
- addressing the question of matter-antimatter asymmetry

Experiment addresses new state of matter: the quark-gluon plasma

ALICE

- Heavy ion collisions, eg. Pb-Pb
- Using L3 magnet

Challenges for LHC Detectors

- Protons are composite particles
 - Bags filled with quarks and gluons
 - Quark-quark and gluon-gluon collisions are the fundamental processes
 - Screened by interactions of other quarks & gluons
- LHC is filled with 2835 + 2835 proton bunches
 - Collisions every 25 ns, i.e. 40 MHz crossing rate
- 10¹¹ protons per bunch
 - 25 pp interactions per crossing (pile-up)
 - Each bunch collision produces ≈ 1600 charged particles

Joachim Mnich | LHC - A New Era in Particle Physics | 50th Anniversary KCETA |

A Collision Producing a Higgs Boson

with 25 pile-up interactions

 $H \rightarrow ZZ \rightarrow 4$ muons

requires a highly granular detector Identify each track Reconstruct every track

takes a lot computing power

Particle Physics at the Energy Frontier

- Progress in theory and experiment over the past decades
 - **Standard Model of Particle Physics**
 - Matter particles: Quarks and Leptons
 - Force carriers: Gauge Bosons
- Excellent theory tested down to 10⁻¹⁸ m
 - However
 - Missing corner stone: Higgs-Boson
 - Many open questions to be addressed at the Terascale

Particle Physics at the Energy Frontier

dark energy

2- The weight at

 Standard Model valid only for about 5% of the universe

Experimental and theoretical evidence for new physics at scale of 1 TeV

→ LHC

Mystery of Dark Matter

- What is the universe made of?
- Particles produced copiously at the big bang?
- Supersymmetry provides a candidate for Dark Matter to be discovered at the LHC

Joachim Mnich |LHC - A New Era in Particle Physics | 50th AnniVersary KCETA |

baryon neutrinos

dark matter

stars

Origin of Mass and Supersymmetry

Higgs Particle

- What is the origin of mass?
- Do fundamental particles acquire their mass through the Higgs mechanism?
- Is space filled with an omnipresent energy field?
- If so it can be studied at the Terascale
- If not new phenomena must appear
- Supersymmetry
 - Symmetry between forces and matter?

1210-222

- Mirror world of new supersymmetric particles?
- New shadow world like antimatter?
- Supersymmetry as key to resolve clash between Einstein's general relativity and quantum mechanics, i.e. the worlds of large and small scales?
- Experiments at the LHC will provide answers

Joachim Mnich | LHC - A New Era in Particle Physics | 50th AnniVersary KCETA |

Extra Dimensions and Grand Unification

Extra Space Dimensions:

- Mystery of vastly different scales of electroweak force (0.1 TeV) and gravity (10¹⁶ TeV)
- Gravity scale lowered through extra spatial dimensions to 1 TeV? Curled up on small distances?
- Particles living in extra dimensions could be detected at the LHC

Grand Unification:

- Why are there three different fundamental interactions?
- Only one truly fundamental interaction of universal strength?
- Insight to be gained at the LHC

Joachim Mnich | LHC - A New Era in Particle Physics | 50th Anniversary KCETA |

unser dreidimensionale

Iniversur

LHC: The Start of the Experimental Programme

IS Experiment at the LHC, CERN

174120

2009-Dec-14 03 51 28 682244 GMT

- 23 November 2009: First Collisions at 900 GeV
- Followed by collisions at 2.36 TeV (world record)

Candidate Collision Event

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

CMS multi-

jet event

Joachim Mnich | LHC - A New Era in Particle Physics | 50th AnniVersary KCETA |

LHC Operation in 2010

- About 200 days of very successful machine commissioning and pprunning
 - Steady increase of luminosity
 - Bunch trains with 150 ns bunch spacing
 - Up to 348 colling bunches
 - Nominal bunch charge
- Peak luminosity of 2× 10³²/cm²/s achieved
 - exceeding goal for 2010 by factor 2
- 50 pb⁻¹ integrated luminosity per experiment

Joachim Mnich | LHC - A New Era in Particle Physics | 50th Anniversary KCETA

Performance of the Experiments

The LHC Computing Grid

Computing Grid jobs (example from ATLAS)

- Working very reliably
 - Pre-requisite for LHC data analysis

Star Les Les

Important role of GridKa

Joachim Mnich | LHC - A New Era in Particle Physics | 50th Anniversary KCETA |

Joachim Mnich | LHC - A New Era in Particle Physics | 50th AnniVersary KCETA |

Joachim Mnich | LHC - A New Era in Particle Physics | 50th Anniversary KCETA

cember 14, 2010 | Page 32

LHCb: Exclusive B-Decays

Important milestone in LHCb physics programme

Joachim Mnich | LHC - A New Era in Particle Physics | 50th Anniversary KCETA

QCD and Jets

- Inclusive jet rates
- Combination of various triggers
- Good understanding over 9 orders of magnitude in rate
- Highest p_T jet observed: 1.3 TeV

Joachim Mnich | LHC - A New Era in Particle Physics | 50th Anniversary KCETA |

Run Number: 167576, Event Number: 69725215

Date: 2010-10-24 15:42:22 CEST

December 14: 2010 T Page 35

Di-jet Events

 $p_T jet1=670 GeV$ $p_T jet2=610 GeV$ $m_{ii}=3.7 TeV$

December 14: 2010 T Page 37

Run Number: 166466, Event Number: 78756195

Date: 2010-10-08 08:05:57 CEST

Joachim Mnich | LHC - A New Era in Particle Physics | 50th Anniversary KCETA |

Long range two-particle correlations in pp collisions at 7 TeV

R(Δη,Δφ)

- Two-particle correlation function R
- Same side correlation (ridge structure) observed for high multiplicity events at ΔΦ = 0
- Most evident in intermediate p_T range
- Resembles features seen in Heavy Ion collisions

Soft QCD

(b) CMS MinBias, 1.0GeV/c<p_<3.0GeV/c

(c) CMS N ≥ 110, p_→>0.1GeV/c

0 0

-2

(d) CMS N \ge 110, 1.0GeV/c<p_<3.0GeV/c

Joachim Mnich | LHC - A New Era in Particle Physics | 50th Anniversary KCETA

Top Quark Physics

CMS: di-lepton channel

$\sigma(pp \rightarrow t \bar{t}) = 194 \pm 72(stat.) \pm 24(syst.) \pm 21(lumi.) pb$

Top-pair Cross Section at 7 TeV

- Based on ≈ 3 pb⁻¹
 - Good aggrement with expectation

ATLAS: $\sigma_{t\bar{t}} = 145 \pm 31^{+42}_{-27} \text{ pb}$

Electroweak Physics

L dt = 35 pb-1

80

60

100

EWK

150

CMS preliminary 2010

 $W \rightarrow$

 $\rightarrow \mu v$

EWK+tt

≥25000

-20000

W and Z bosons

Page 43

• CMS Z $\rightarrow \tau\tau$ candidates

12

- ATLAS observation of $W \rightarrow \tau v$ based on 550 nb⁻¹ (1% of total statistics)
- 78 events with hadronic **τ decay candidates**
- 23 background events

ГТВаг $N \rightarrow \tau \nu$

 $\mathbf{Z} \rightarrow \mathbf{u} \mathbf{u}$

Wi→μν

QCD

DATA

Z→ττ

A Beautiful ZZ Event

 $\mu_0 + \mu_1$: 92.15 GeV (total(Z) p_T 26.5 GeV, ϕ -3.03), $\mu_2 + \mu_3$: 92.24 GeV (total(Z) p_T 29.4 GeV, ϕ +.06), $\mu_0 + \mu_2$: 70.12 GeV (total p_T 27 GeV), $\mu_3 + \mu_1$: 83.1 GeV (total p_T 26.1 GeV).

Invariant Mass of 4µ: 201 GeV

 m_{uu} 94 GeV, E_T^{miss} = 161 GeV

Joachim Mnich | LHC - A New Era in Particle Physics | 50th AnniVersary KCETA |

Searches for New Physics Search for pair produced Lepto-Quarks decaying β % in μ +jet

ATLAS: Di-jet Mass & Angular Distribution

excluded: 0.50 < m(q*) < 1.53 TeV @ 95% CL

Quark contact interactions with scale $\Lambda < 3.4$ TeV @ 95% CL

Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC, Phys. Rev. Lett. 105, 161801 with 315 nb⁻¹

Search for Quark Contact Interactions in Dijet Angular Distributions in in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC, Accepted by PLB

CMS: Limits on Stopped Gluinos

Search for decays of stopped long lived R-hadrons (gluino-meson, gluinobaryon, gluino-gluon bound states) during time intervals without LHC crossing.

Heavy Ion Collisions

CMS Experiment at LHC, CERN

Run/Event: 150431 / 630470

Data recorded: Mon Nov 8 11:30:53 2010 CEST

 Up to 10 000 tracks per events observed

Nov 7, ~1:30

December 14, 2010 | Page 51

Joachim Mnich | LHC - A New Era in Particle Physics | 50th AnniVersary KCETA |

Luminosity in Heavy Ion Run

Steady progress

 ≈ 8 µb⁻¹ per experiment delivered

day of year 2010

Detector Performance in Pb-Pb Collisions

Particle ID by ALICE

Joachim Mnich | LHC - A New Era in Particle Physics | 50th Anniversary KCETA

Jet-Quenching

 Jets are expected to loose momentum traversing dense colore medium

52

 $p_t > 2.6 \text{ GeV}$

and > 0.7 GeV (ECAL) and > 1.0 GeV (HCAL)

Asymmetric jets if produced at the edge

ET = 100 GeV

Many events with asymmetric di-jets observed

Charged Track Multiplicity

ALICE:

$dN_{ch}/d\eta = 1584 \pm 4 \text{ (stat.)} \pm 76 \text{ (syst.)}$

- Increase by factor 1.9 wrt pp collisions at same energy
- Increase by factor 2.2 wrt RHIC Au-Au at 200 GeV

Joachim Mnich | LHC - A New Era in Particle Physics | 50th AnniVersary KCETA

- LHC will resume in February after the technical stop
- 200 days pp physics plus 4 weeks heavy ion scheduled
- Goal:

1 fb⁻¹ per experiment at 7 TeV

Based on very positive experience in 2010 goals might be revised

Outlook for 2011

- increase cms energy to 8 TeV
- peak lumi ≈ 6×10³²/cm²/s resulting in integrated lumi of ≈ 2 fb⁻¹
- LHC running in 2012?

more news early February

Opens bright perspective for the Higgs particle hunt in 2011/12

The Hunt for the SM Higgs

ATLAS simulation at 7 TeV

- 5 fb⁻¹ enough to close gap with LEP
- Expected 3σ observation from 123 to 550 GeV

V())

m(b)

8

(*a*)

TeV

fb-

With 5 fb⁻¹ can exclude or have 3 σ evidence from 114 to 600 GeV

1 fb⁻¹

2 fb⁻¹

5 fb⁻¹

10 fb⁻¹

TeV

Search for Supersymmetry

Joachim Mnich | LHC - A New Era in Particle Physics | 50th Anniversary KCETA

Outlook beyond 2011

Long term planning

- **2012**:
 - shutdown to repair might be postponed to 2013
- **2013 2020**:
 - running at 14 TeV
 - two years running interleaved with 1 yerar shutdown
 - push luminosity to 10³⁴/cm²/s
 - collect ≈ 300 fb⁻¹ per experiment
- **2020+**:
 - plans to upgrade the luminosity (High-lumi LHC) to ≈ 5×10³⁴/cm²/s
 - major upgrades of detector

Search for the Higgs Boson at the LHC

Combine all search channels and determine expected significance as function of the luminosity and Higgs mass:

10 fb⁻¹ sufficient for 5 σ discovery of the Higgs LHC will definitely tell if there is a Higgs or not

Joachim Mnich | LHC - A New Era in Particle Physics | 50th AnniVersary KCETA |

SUSY Search at LHC

Example: discovery reach as function of luminosity and model parameters which fix the mass scale of SUSY parameters

Joachim Mnich | LHC - A New Era in Particle Physics | 50th AnniVersary KCETA

- achievable limits exploiting E_T^{miss} signatures
- requires very good understanding of detectors

Conclusion:

- LHC will eclipse today's limits on SUSY particles and parameters
- or discover SUSY if it exists at the TeV scale

- Phantastic start of the LHC physics programme
 - very good perfomance of the machine
 - and of the detectors
 - Successful stress tests of computing, analysis tools etc.
- Excellent prospects
 - many SM measurements on top quarks, W/Z bosons and others

Summary

- entering uncharted territory next year
- extending mass regions for SUSY and other particles
- the hunt for the Higgs will start
- LHC will revolutionize the understanding of our world

Very exciting times are ahead of us!