
IWLC2010 International Workshop on Linear Colliders 2010

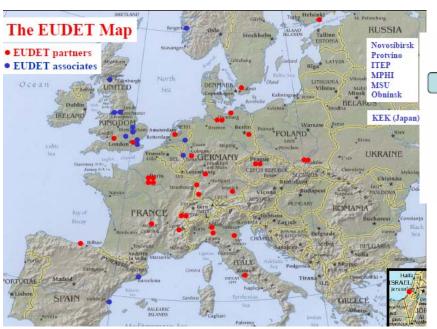
Conclusions from Detectors

Joachim Mnich (DESY)
October 2010
Geneva

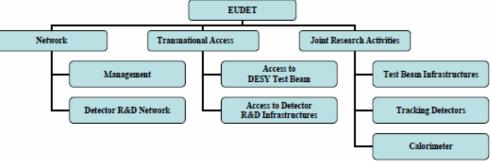
Outline

Disclaimer:

- not a summary of all sessions and talks on LC detector R&D
- impossible to give justice to all the many results and developments presented here

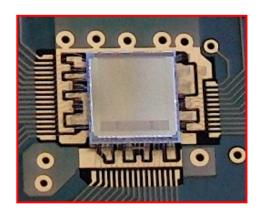

Instead:

- pick a few highlights
- personal selection with a few personal remarks
- outlook


Looking back...

EUDET project 2006-2010:

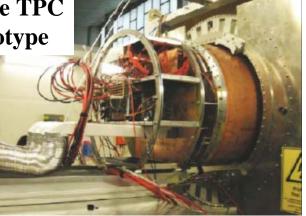
- collaboration in Europe & beyond
 - > 30 institutes



well defined structrue

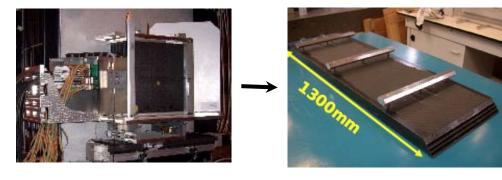
plus additional funds7 M€in total

Pre-EUDET (Vienna 2005)

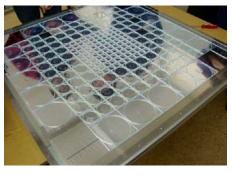


Small TPC prototypes

Large TPC prototype



+ many other examples


Conclusion: continue collaborative spirit → AIDA

EUDET - before / after

- From proof-of-principle to technology prototypes:
- compact mechanics, power-pulsed ASIC family, scalable DAQ
- ECAL

• aHCAL

(nothing)

• dHCAL:

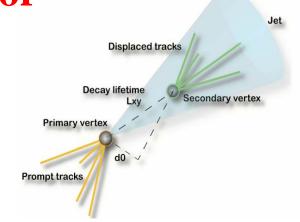
A few selected highlights...

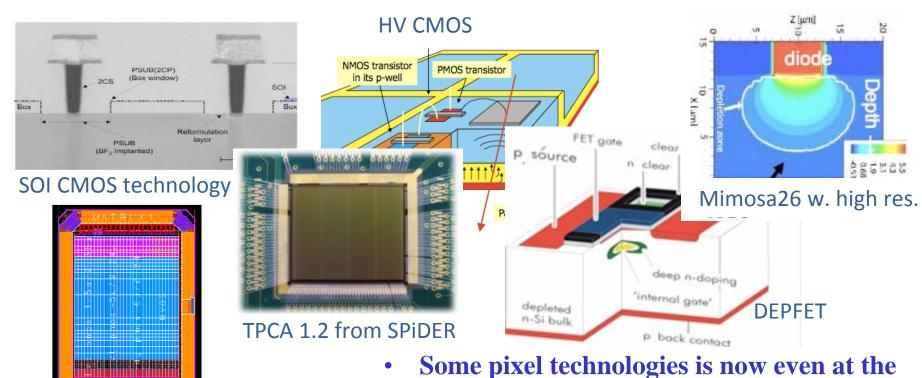
LC Vertex Detector

Measure impact parameter, charge for every charged track in jets, and vertex mass.

Need:

- Good angular coverage with many layers close to vertex.
- Efficient detector for very good impact parameter resolution
- Material $\sim 0.1\% X_0$ per layer.
- Capable to cope with the LC beamstrahlung background (higher for CLIC)
- Single point resolution better than 3 μ m.
- Small pixels, thin sensors, thin r/o electronics, low power (gas cooling).
- CLIC requires better timing resolution.




Figure of merit for the VXD: Impact Parameter Resolution

$$\sigma_{r\phi} \approx \sigma_{rz} \approx a \oplus b/(psin^{3/2}\vartheta)$$

Accelerator	a (µm)	b (µm)
LEP	25	70
SLD	8	33
LHC	12	70
CLIC	<5	<15
ILC	<5	<10

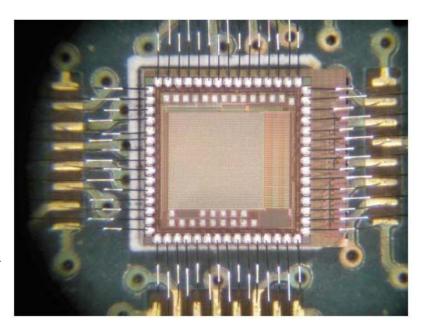
Technology Advances

- Diversified R&D on pixels continues
- substantial progress achieved on several fronts during the last year even if at reduced speed
- Great achievements partly because the relevant accessible industrial technologies have made sometimes striking progress

level where it is expected to meat all ILD vertex detector specifications by 2011₈
i.e. within the DBD timeline

3D Vertical Integration

Stacking of multiple layers of chips

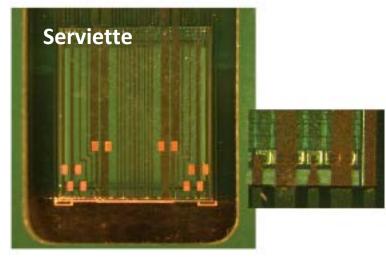

- optimise pixel performance
- simplify integration
- possibility to develop novel monolithic pixel sensors
- Important for CLIC developments

Substantial number of teams contributing to this effort

- progress slower than expected
- but considerable progress recently

Vertically Integrated Pixel VIP2a (FNAL)

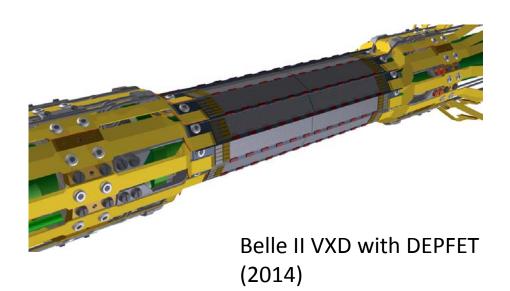
Integration Issues

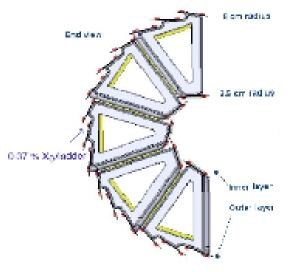

- R&D on system integration issues have picked up speed
- Achieving ultra-light pixelated systems (like double-sided, or monolithic or unsupported ladders)

Thinned **DEPFET** sensor

Fully equipped ladder with 50 μ m sensors by 2012 $\sim 0.3\% X_0$

Mimosa18 thinned to 30 um embedded in kapton


 $< 0.15\% X_0$



Silicon Carbide for novel mechanical vertex struct@res

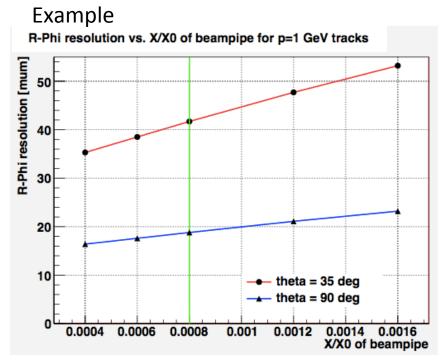
LC technologies in real experiments

- Important: integration of sensors in real experiments Smaller projects: beam telescopes (i.e. EUDET BT) Real vertex detectors!
- Leads to concrete applications of > 10 years of R&D
- Allows to assess various emerging technologies in real experimental HEP conditions for the first time
- Even if they are not yet all pushed to the performances needed for the ILC.

STAR@RHIC with Mimosa (2012)

MC Simulation CLIC-VXD

 Layout optimisation for the vertex and forward tracking region started from validated ILC tracking-detector designs: ILD and SiD

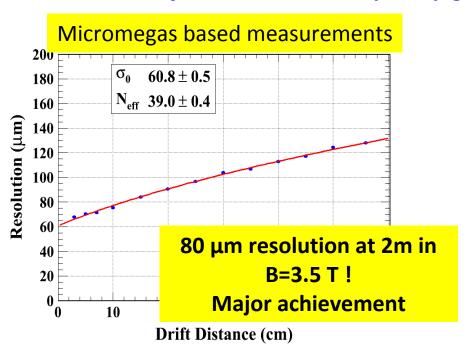

Adaptations for CLIC (background-) conditions: forward region, distances to IP

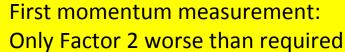
Where applicable: complementary choices, to study influence on performance

Fully implemented in Geant-4 simulation frameworks Mokka (ILD) and SLIC

(SiD)

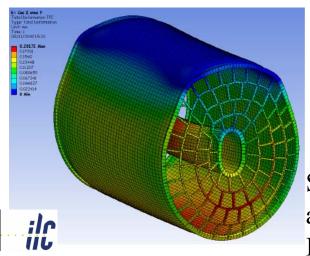
CLIC_ILD_CDR and
CLIC_SiD_CDR will be used for large-scale full-simulation MC studies towards a Conceptual
Design Report (CDR), to be submitted in 2011

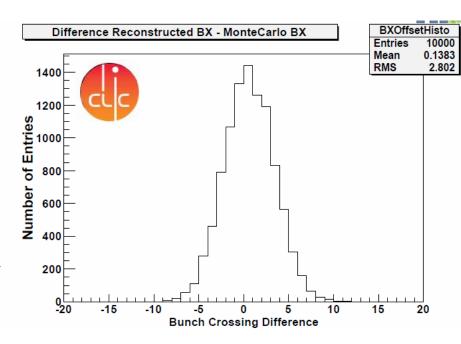

~20-30% worsening for x2 more material w.r.t. (optimistic) defaulT 12




Gaseous Tracking

- TPC is main tracker for the ILC concept, as option under evaluation by CLIC
- Active R&D effort within the LC-TPC collaboration
- Focus of the past few years:
 - demonstrate feasibility and performance in prototypes
 - develop an realistic overall concept including integration in the ILD detector
 - major test beam effort by many groups using DESY beam

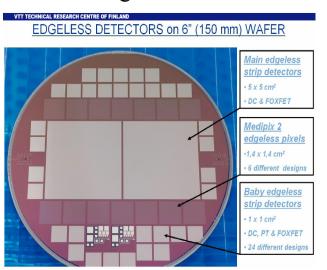


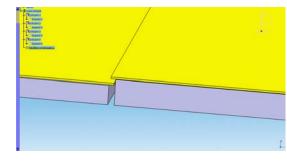

TPC at ILC & CLIC

- Requirements at ILC and CLIC are very different:
 - ILC: 369 ns vs CLIC: 0.5 ns (30 mm vs 40 μm)

Studies of detector integration have started

• Simulation: bunch crossing ID within +-5 CLIC bunches: TPC not immediately excluded


Studies of mechanics and integration into ILD have started


Silicon Tracking

- Silicon tracking is central to both ILC and to CLIC concepts
- Main challenges:
 - material budget in sensors and support structures
 - level of integration of readout and services
 - power supply, power cycling
 - alignment methods

Topic has large synergy with other projects: sLHC, BELLEII, others

Example: edgeless sensors could simplify overall construction significantly and reduce material budget

Test (edgeless) detectors on 6" wafer (SOI technology)

Silicon Tracking

Internal alignment is critical for success of tracking:

- True for any of the concepts
- Particular challenge for the large outer Silicon layer in ILD

Principle: shine laser beam through Si-layer (a la CMS)

But: develop more transparent sensors

 $(20\% \rightarrow 60\% \text{ transmission})$

Development of mixed analogue- digital 128 channel ASCIC (SiTR chip) Integrate the pitch adapter on the sensor Sophisticated infrastructure and test benches developed (in Europe within EUDET)

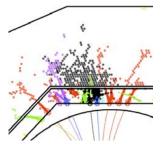
Mechanics:

Develop integrated concept for SI tracking integration into ILD and SiD

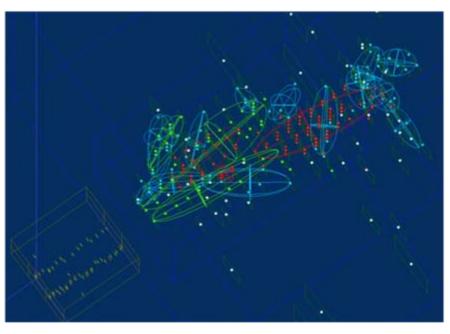
Main Challenges in Tracking

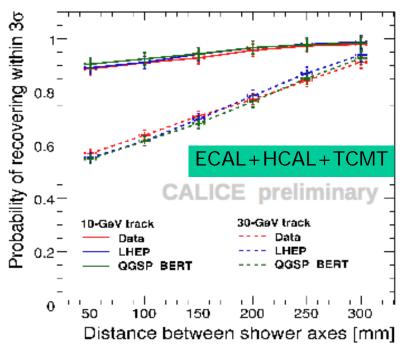
Technologies:

- Have at least one technology per system which fulfills all requirements Might well be different for ILC and CLIC
- Have a concept on how to get data from the sensor to the DAQ

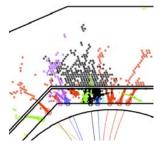

- System aspects:
 - Move from test to system aspects:
 - Large scale systems
 - System integration within sub-detector
 - System integration with other parts of the detector

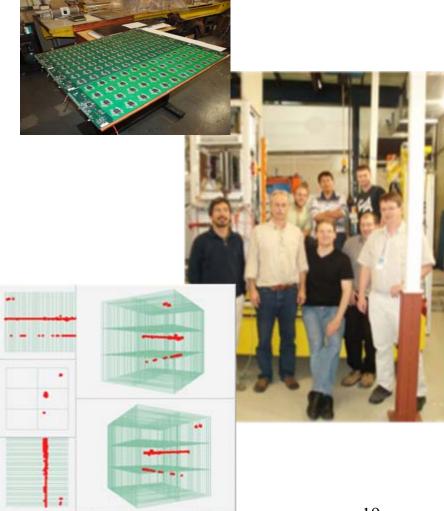
TPC endplate design TPC material budget Si material budget

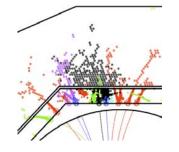

Engineering aspects:


- Develop engineering concept for technology
- Develop powering and cooling concepts for system

Support structures
Power pulsing
Cabling, services


Calorimeter: PFLOW with test beam data


- The "double-track resolution" of an imaging calorimeter
- Small occupancy: use of event mixing technique possible
- Apply full **Pandora** clustering algorithm
- Important: agreement data simulation
- Strong support for full detector simulations


to be done with photons, too

DHCAL test beam started at FNAL

- cubic metre steel instrumented with RPCs
- Argonne led US effort in CALICE
- using existing Fe stack and infrastructure, DAQ, tail catcher
- first very clean muon events
- hadrons expected today
- combined run with SiW ECAL physics prototype in spring 2011
- possible continuation with W
- Testbeam started this week

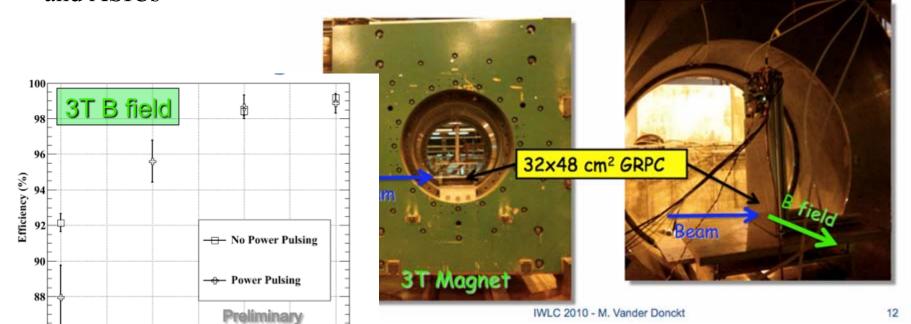
6.9

Calorimetry

7.1

7.2

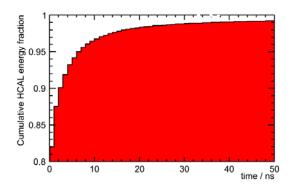
GRPC Polarisation Voltage (kV)

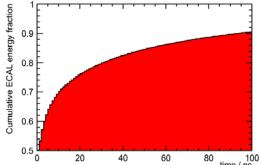

7.5

Power pulsing at 3 T

 sDHCAL technological prototype with integrated electronics and ASICs

Beam conditions: 80GeV @ High Rate Aim: PowerPulsing tests using B field.

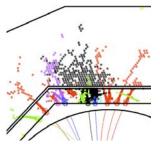



20

Calorimetry @ CLIC

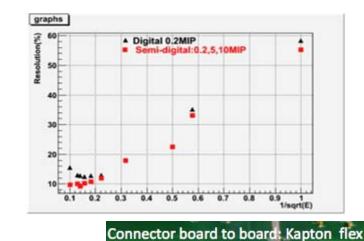
• higher jet energy - deeper HCAL

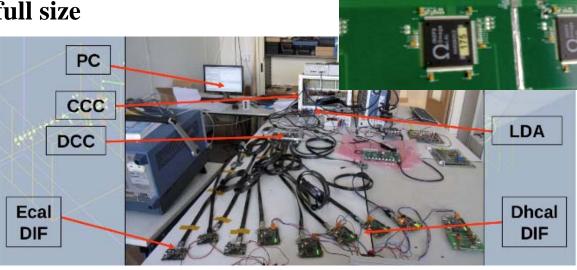
- tungsten is cost-competitive with a larger coil
- but slower (nuclear) response may be in conflict with time stamping needs

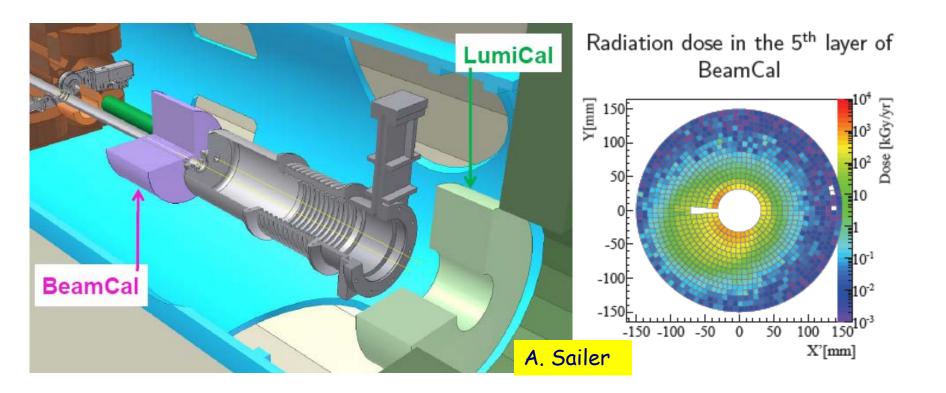

CALICE test beam started @ CERN

- first use existing scintillator aHCAL
- later: gaseous dHCAL
- and 2nd generation aHCAL with timing electronics

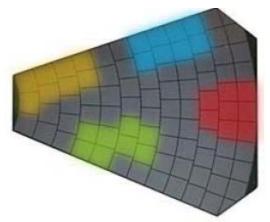
Pandora on ILD-CLIC

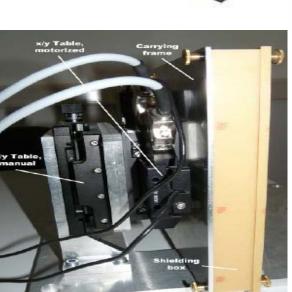

$\mathbf{E}_{ extsf{JET}}$	RMS ₉₀ /E _J
45 GeV	3.6 %
100 GeV	2.9 %
250 GeV	2.8 %
500 GeV	3.0 %
1 TeV	3.2 %
1.5 TeV	3.2 %

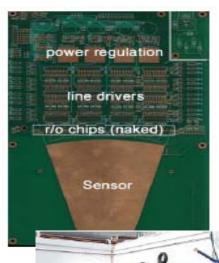


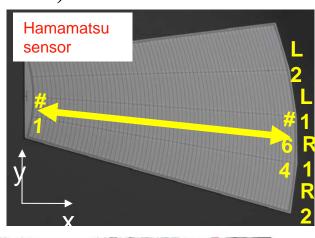

Calo: Towards DBD

- Physics with gaseous HCAL
 - understand operational stability uniformity, calibration, energy and topological resolution, use of amplitude information
- Electronics integration demonstrators with all candidate technologies
- System performance of a full size
 2nd generation
 - sDHCAL module
- Make it work!

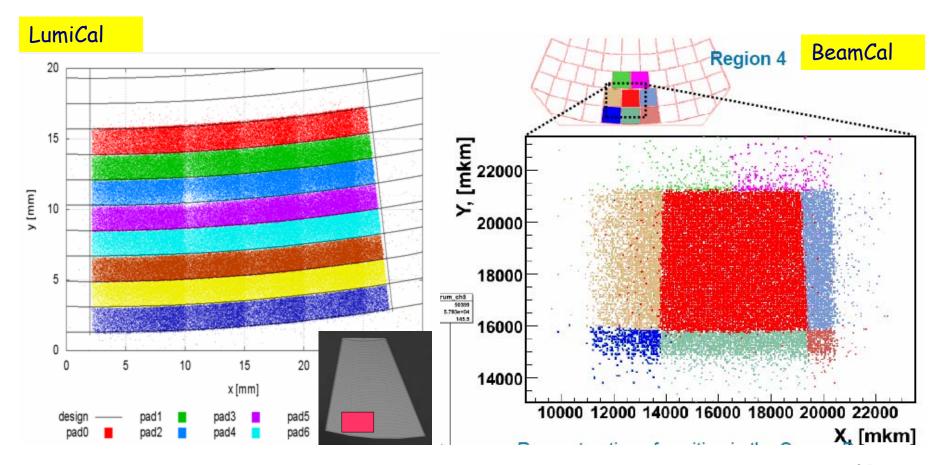

First Design of the Forward Region of a CLIC detector

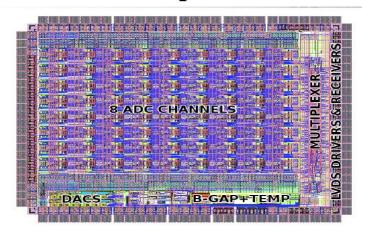



- LumiCal is designed to measure the Luminosity with a precision of 10⁻² at 3 TeV
- BeamCal feasible, improves hermeticity


Successful test-beam

Sensor plane Prototypes for LumiCal (Silicon) and BeamCal (GaAs) have been manufactured, connected to ASICs and studied in the 4 GeV electron beam at DESY (Most components supported by EUDET)




Successul test-beam

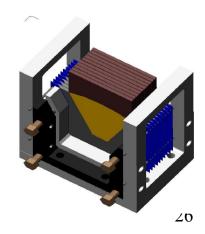
- · Several millions of trigger taken, Data analysis ongoing
- Preliminary results, impact point measured with the telescope correlated with the signal of a certain pad

In Progress

8 Channel ASIC chips tested (UST Cracow)

Static and dynamic parameter as expected, working up to 50 MHz

Will be used in the next beam-test for a full system test


Power pulsing

FPGA based DAQ (UST Cracow, INP Cracow, Tel Aviv Univ.)

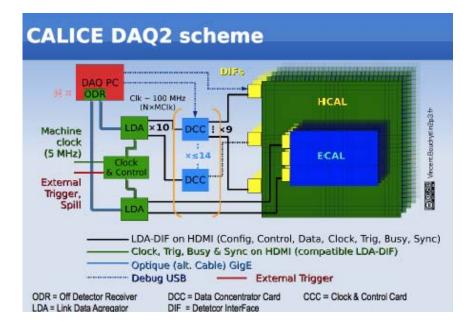
Xilinx Virtex5FXT FPGA with embedded PowerPC 440

2012: performance measurements of a fully assembled sensor plane

> 2012: towards a calorimeter prototype (AIDA supported)

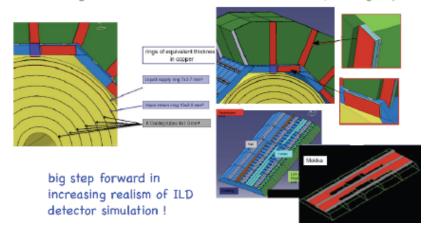
DAQ and **Software**

DAQ:


- Many efforts (test beam driven)
 EUDET telescope, LCTPC,
 CALICE,...
- Overall concept(s) needed
- Learn from LHC detectors

integrated concepts

Result: DAQ efficiency > 90%


Software:

- Common tools used by ILC & CLIC
- New models for DBD/CDR
- Simulation and reconstruction are making good progress towards optimisation

new Mokka release – towards ILD_01

- added cabling and services for TPC, ECal & Hcal (C.Clerc, G.Musat)
- still missing: inner detector services (to be defined by R&D groups)

Summary

- Very rich detector R&D programme for a Linear Collider
- Very good progress in many projects
- Good collaboration ILC-CLIC
- LC detector R&D has impact on other projects, e.g.
 - LHC
 - B-factories
 - and beyond HEP
- Funding is critical
- Define plans until 2012 and beyond
 - Priorities
 - Integration & ,,low tech" issues

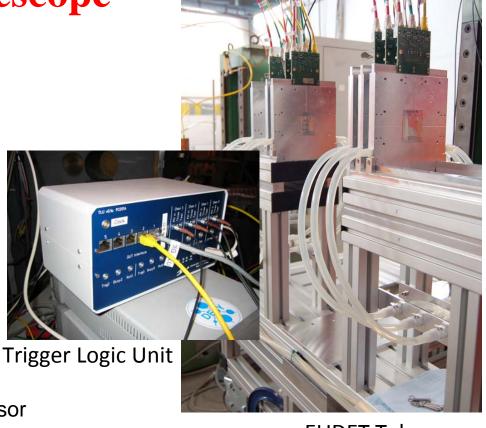
Backup slides

EUDET Telescope

Generally applicable:

- Main use from small pixel sensors to larger volume tracking devices
- Movement of device under test (DUT) to scan larger surface

Mimosa26


- Easy to use: well defined/described interface
- Very high precision: <3 μm precision even at smaller energies; < 2μm for high energy hadrons

663 kpixels with 18.4 um pitch

column parallel binary readout

EUDET Telescope

- Telescope is travelling back and forth between DESY and CERN since 2007 (84 test beam weeks so far)
- All together 29 user groups from LC and LHC (also combined running)