Early Physics at the LHC

Joachim Mnich DESY

U Karlsruhe GK Workshop Freudenstadt

October 2007

October 2007

- Lecture 1: Physics at proton colliders Status of LHC

The week of all

- Lecture 2: Standard Model physics
- Lecture 3: Searches for new particles & phenomena e.g. Higgs and SUSY

October 2007

J. Mnich: Early Physics at the LHC

Outline

Search for New Physics at the LHC

Some general considerations on LHC early phase

- time scale for discoveries not necessrily determined by ramp-up of integrated luminosity
- but progress and level of detector understanding
 - malfunctions, calibration, alignment
- difficult issues
 - jets
 - missing ET
 - forward detectors
- less critical

October 2007

- lepton based measurements
 - in particular muons

Understanding of the Detector

• Example for an easy case: muon pairs

Understanding of the Detector

Difficult example: missing ET

- is a very powerful tool to look for new physics
- but very complicated variable and difficult to understand:
- collison effects
 - pile-up
 - underlying event
- beam related background
 - beam halo
 - cosmic muons
- detector effects

October 2007

- instrumental noise
- dead/hot channels
- Inter-module calibration

Search for Higgs Bosons

Emphasis on SM Higgs

J. Mnich: Early Physics at the LHC

October 2007

What do we know today about the SM Higgs boson?

needed in the SM to accomodate masses (heavy gauge bosons and fermions)

Standard Model Higgs Boson

- mass is not predicted, except that $m_H < 1000 \text{ GeV}$
- direct searches at LEP

m_H > 114.4 GeV

electroweak precision measurements (incl. m_t measurement)

Once the mass is know all other Higgs properties are fixed!

Higgs Boson Production at the LHC

Gluon-gluon fusion and W, Z fusion are dominant

October 2007

Cross section at the Tevatron almost factor 100 smaller!

Higgs couples proportional to masses ⇒ preferentially decaying into heaviest particle kinematically allowed

Higgs Boson Decay

Branching ratio versus m_H:

 Low mass (115 < m_H < 140 GeV H → bb make up most of the decays problem at the LHC because of the huge QCD background !

 Intermediate (140 < m_H < 180 GeV) H → WW opens up use leptonic W decay modes

 High mass (m_H > 180 GeV) H → ZZ → 4 leptons golden channel! What to do in the preferred low mass region, i.e. $m_H < 140$ GeV?

Higgs Boson Decay

- use H →γγ
- very low branching ratio O(10-3)
- but clean signature

internal loop with heavy charged particle W boson or top quark

10

Total width of the Higgs (= inverse lifetime)
at low masses Higgs is a very sharp resonance

 $\Gamma_{\rm H} << 1 {
m MeV}$

 $\Gamma_{\rm H} \approx m_{\rm H}$

October 2007

• $\Gamma_{\rm H}$ explodes once H \rightarrow WW, ZZ open up for m_H \rightarrow 1 TeV

Search for the Higgs Boson

Important: determine background from data, e.g. jet photon fake rate CDF

October 2007

Combine all search channels and determine expected significance as function of the luminosity and Higgs mass:

Search for the Higgs Boson at the LHC

J. Mnich: Early Physics at the LHC

October 2007

 The LHC will explore the entire Higgs mass region and definitely answer the question if there is a Higgs boson or not

Summary on Higgs search

- The modest amount of 10 fb⁻¹ of luminosity is required could be collected in 1-2 years
- How about the Tevatron experiments?

Search for New Phenomena

Supersymmetry (MSSM)

J. Mnich: Early Physics at the LHC

October 2007

1. Quadratically divergent quantum corrections to the Higgs boson mass are avoided

$$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

(Hierarchy or naturalness problem)

- 2. Unification of coupling constants of the three interactions seems possible
- 3. SUSY provides a candidate for dark matter,

October 2007

The lightest SUSY particle (LSP)

4. A SUSY extension is a small perturbation, consistent with the electroweak precision data

J. Mnich: Early Physics at the LHC

Why SUSY?

SUSY Search at LHC

Production of SUSY particles at the LHC

- squarks and gluinos are pair-produced through strong interaction, i.e. high cross sections
- but also sleptons and other SUSY particles can be pair-produced
- SUSY particles decay in a chain to SM particles plus the LSP

Signature:

October 2007

- Ieptons, jets and missing E_T
- depend of SUSY particles produced, on their branching ratios etc.

Strategy to discover SUSY at the LHC:

- look for deviation from SM in distributions
 e.g. multi-jet + E_T^{miss}, multilepton+ E_T^{miss}
- establish SUSY mass scale
- try to determine model parameters (difficult!)

Squarks and Gluinos

- Strongly produced, cross sections comparable to QCD cross sections at the same mass scale
- If R-parity conserved, cascade decays produce distinctive events: multiple jets, leptons, and E_T^{miss}
- Typical selection: $N_{iet} > 4$, $E_T > 100, 50, 50, 50$ GeV, $E_T^{miss} > 100$ GeV

• Low mass SUSY ($M_{sp} \approx 500 \text{ GeV}$) accessible with O(100 pb⁻¹)

Early SUSY Searches

- However time to discovery will be determined by
 - time to understand detector performance, e.g. E_T^{miss}
 - time to collect control samples e.g. W+jets, Z+jets, top,...

J. Mnich: Early Physics at the LHC

October 2007

23

Early SUSY Searches

Inclusive searches for 1 fb-1

October 2007

Example: discovery reach as function of luminosity and model parameters which fix the mass scale of SUSY parameters

SUSY Search at LHC

- achievable limits exploiting E_T^{miss} signatures
- requires very good understanding of detectors

Conclusion:

- LHC will eclipse today's limits on SUSY particles and parameters
- or discover SUSY if it exists at the TeV scale

Example for other BSM Searches

October 2007

LHC start expected 2nd half 2008 luminosity O(100 pb⁻¹)

- commissioning of detectors
- calibrations, alignment
- initial SM measurements: QCD, W/Z, top, ...

Summary

Iight SUSY?

• 1 fb⁻¹, in range for 2009

- start SM precision measurements
- enter Higgs discovery era
- explore SUSY over large area
- new resonances, e.g. Z'

• 10 - 30 fb⁻¹, until 2011/12

October 2007

- most SM measurements, incl. precision m_t, m_W
- cover entire Higgs mass range
- start exploring multi-TeV region

