Early Physics at the LHC

Joachim Mnich DESY

U Karlsruhe GK Workshop Freudenstadt

October 2007

October 2007

- Lecture 1: Physics at proton colliders Status of LHC & experiments
- Lecture 2: Standard Model physics

The men in

- Lecture 3: Searches for new particles & phenomena e.g. Higgs and SUSY

October 2007

J. Mnich: Early Physics at the LHC

Outline

- Are quarks and leptons really elementary?
 e.g. structureless, pointlike objects?
- Why are there 3 families?
- Are there additional forces and gauge bosons?
- What is the origin of the matter-antimatter asymmetry in the universe? What is the origin of CP violation?

Today's Questions and Problems

• What is dark matter ($\approx 20\%$ of the universe) and dark energy ($\approx 75\%$)?

- Answers to these questions need
 - experiments at high energy
 - and with high precision

October 2007

Discoveries

- Increase collision energy to explore TeV region

Future Experiments

- explore the allowed Higgs mass range
- search for Supersymmetry
- and other new physics phenomena
- be prepared for the unexpected

→LHC

Precision measurements and tests of the SM

- measure SM parameters m_W, m_t
- measure properties of new particles (Higgs, SUSY)
- and check consistency of the model

\rightarrow LHC & ILC

October 2007

- Why a proton collider like the LHC? e⁺e⁻ machines like LEP are ideal machines for precision emasurements:
 - e⁺/e- are point-like, no substructure
 - \rightarrow very clean events
 - centre-of-mass system
 - event kinematics completely fixed

Events at proton collider are much more complex:

- protons are not elementary
- hard scattering of partons (quarks & gluons)
- underlying event

October 2007

- use only part of the beam energy
- event kinematics only partially constraint

e⁺e⁻

ALEPH

Proton Collider

Problem of Electron Storage Rings

Drawback of circular electron colliders like LEP: Energy loss due to synchrotron radiation (Accelerated charge does radiate photons!)

- Radiated power P (in synchrotron photons) ring with radius R and energy E
- Energy loss per turn

October 2007

- Ratio of energy loss between electrons and protons

 $P = \frac{2 e^2 c}{3 R^2} \left(\frac{E}{mc^2}\right)^4$ $-\Delta E \approx \frac{4 \pi e^2}{3 R} \left(\frac{E}{mc^2}\right)^4$ $\frac{\Delta E(e)}{\Delta E(p)} = \left(\frac{m_p}{m_e}\right)^4 \sim 10^{13}$

Comparison of past and future electron and proton colliders:

History of Colliders

J. Mnich: Early Physics at the LHC

October 2007

The Tevatron Collider at Fermilab

Proton-Antiproton Collider

- 1992 1996
 Run I with 2 experiments
 CDF and D0
 √s = 1.8 TeV
 ∫Ldt = 125 pb⁻¹
- 1996 2001 Upgrade
 - new injector, antiproton recycler
 - \rightarrow higher luminosity
 - detector improvements

• since March 2001 Run II, $\sqrt{s} = 1.96$ TeV

October 2007

Both experiments are running collecting & analysing data

The Large Hadron Collider (LHC) at CERN

 Proton-proton collider in the former LEP tunnel at CERN (Geneva)

 Highest ever energy per collision 14 TeV in the pp-system

A AND A AND THE

- Conditions as 10⁻¹³ 10⁻¹⁴ s after the Big Bang
- 4 experiments:
 - ATLAS

October 2007

- CMS
- LHC-B specialised on b-physics
- ALICE specialised for heavy ion collisons
- Constructed in worldwide collaborations
- Start planned for 2008

The Large Hadron Collider LHC

LHCh

Challenges for the LHC

 Superconducting dipole magnets to keep 7 TeV protons on circular path (r ≈ 3 km)

|B| = 8.33 Tesla

- 1232 dipole magnets are needed (+ quadrupole, sextupoles etc.) each dipole is 15 m long
- 1.9 K operating temperature supraliquid He largest cyrogenic facility in the world
- Quench protection stored energy in one dipole: 8 MJ

October 2007

LHC dipole design incoporates reversed field for oppositely rotating proton beam

BTW:

the stored energy in the LHC proton beams is 350 MJ enough to melt 500 kg of copper!

Status of the LHC

Technolog

• Example dipoles: all 1232 dipoles built and installed

Undated 30 Apri

- All magnets prepared on schedule
- Interconnections on-going in 6 sectors
 - sector 7-8 ready
 - closure of 4-5 and 8-1 upcoming - 岡田 村本 記書会 王子子 日間子

LHC schedule: first beam in 2008

October 2007

Last dipole lowered on April 26, 2007

13

Status of the LHC

sector 7-8

Cryogenics complete

First cooldown April 2007:

• 1.9 K: The coldest place in the universe!

October 2007

Physics at Proton Colliders

October 2007

- Protons are composite, complex objects
 - partonic substructure
 - quarks and gluons

Interesting hard scattering processes quark-(anti)quark quark-gluon qluon-gluon

However, hard scattering (high momentum transfer) processes are only a small fraction of the total cross section

- total inelastic cross section ≈ 70 mb (huge!)
- dominated by events with small momentum transfer

Proton beam can be seen as beam of quarks and gluons with a wide band of energies

Proton-Proton Collisions

x₁p

• The proton constituents (partons) carry only a fraction $0 \le x \le 1$ of the proton momentum

 The effective centre-of-mass energy √ŝ is smaller than √s of the incoming protons

$$p_{1} = x_{1} p_{A}$$

$$p_{2} = x_{2} p_{B}$$

$$if x_{1} = x_{2} = x$$

 $p_A = p_B = 7 \text{ TeV}$

October 2007

To produce a particle of mass					
mass	LHC	Tevatron			
100 GeV	$\mathbf{x} \approx 0.007$	$\mathbf{x} \approx 0.05$			
5 TeV	$\mathbf{x} \approx 0.36$				

Note:

x₂p

- the component of the parton momentum parallel to the beam can vary from 0 to the proton momentum $(0 \le x \le 1)$
- the variation of the transverse component is much smaller (of order the proton mass)

Kinematics fully defined only in transverse plane

Variables in pp Collisions

Transverse momentum p_T $p_T = p \sin \theta$

Rapidity:
$$y = \frac{1}{2} \ln \frac{E + p_L}{E - p_L}$$

Differences in y are invariant under Lorentz boosts

Pseudo-rapidity: $\eta = -\ln \tan \frac{\theta}{2}$

handy approximation, do not need to know the particle mass

October 2007

 $\begin{array}{|c|c|c|c|} \theta = 90^{\circ} & \eta = 0 \\ \hline \theta = 10^{\circ} & \eta \approx 2.4 \end{array}$

proton

J. Mnich: Early Physics at the LHC

p_T

proton

θ

Measured at HERA in ep-scattering, e.g.:

October 2007

Born $p \rightarrow q$ qremnantqremnant

u- and d-quarks at large x-values gluons dominate at small x large uncertainties for gluons

Cross Section Calculation

$\sigma = \sum_{a,b} \int dx_a dx_b f_a (x_a, Q^2) f_b (x_b, Q^2) \hat{\sigma}_{ab} (x_a, x_b)$

sum over initial states a,b f_i(x_i,Q²) = parton density functions

Example: W production in leading order

$\sigma(pp \rightarrow W) \approx 150 \text{ nb} \approx 2 \cdot 10^{-6} \sigma_{tot}$

THE TREETO

October 2007

 W^+

Parton Density Functions at the LHC

 10°

 10^{8}

 10^{7}

 10^{6}

 10°

 10°

 10^{3}

 10^{2}

 10^{1}

 10^{0}

 10^{-7}

y =

M = 10 GeV

 10^{-6}

 10^{-5}

 (GeV^2)

 \mathbf{O}_{2}^{2}

Q = M

y = rapidity

M = 100 GeV

 $x_{1,2} = (M/14 \text{ TeV}) \exp(\pm y)$

M = 1 TeV

CELLE EVOLUTION

HER.

 10^{-3}

 10^{-2}

LHC is a proton-proton collider But fundamental processes are the scattering of

- Quark Antiquark
- Quark Gluon
- Gluon Gluon

Examples:

10000

000

October 2007

⇒ need precise PDF(x,Q²) + QCD corrections (scale)

 $q\bar{q} \rightarrow W \rightarrow lv$

 $gg \rightarrow H$

J. Mnich: Early Physics at the LHC

 10^{0}

fixed

target

 10^{-1}

M = 10 TeV

Rate of produced events for a given process

N = σ **L** σ cross section [barn = 10⁻²⁴ cm²] L luminosity [1/cm²/s]

- luminosity depends on machine parameters: number of protons stored, beam focus at the interaction point, ...
- Iuminosity should be high to achieve acceptable rates for rare processes

Luminosity

「「「「「「「「「「「「「「」」」」」「「「「」」」」」」

Comparison of colliders:

- $10^{31}/cm^2/s$ LEP
- 2·10³²/cm²/s Tevatron Run II design
- 10^{33} /cm²/s LHC initial phase (≈ 3 years)
- 10^{34} /cm²/s LHC design luminosity (> 2010)

- 1 experimental year is about 10⁷ s
- 10 fb⁻¹ per year in the initial LHC phase
- 100 fb⁻¹ per year later

October 2007

Proton-Proton Collisions at the LHC

- 2835 + 2835 proton bunches separated by 7.5 m
 → collisions every 25 ns = 40 MHz crossing rate
- 10¹¹ protons per bunch
- at 10^{34/}cm²/s
 ≈ 35 pp interactions per crossing pile-up
 - $\rightarrow \approx 10^9$ pp interactions per second !!!
 - in each collision
 ≈ 1600 charged particles produced

enormous challenge for the detectors

Cross Section of Various SM Processes

 \Rightarrow Low luminosity phase 10³³/cm²/s = 1/nb/s

approximately

- > 10⁸ pp interactions
- > 10⁶ bb events
- > 200 W-bosons
- 50 Z-bosons
- 1 tt-pair
- will be produced per second and
 - > 1 light Higgs

per minute!

October 2007

The LHC is a b, W, Z, top, Higgs, ... factory!

The problem is to detect the events!

(TeV)

√s

Experimental Signatures

1. Hadronic final states, e.g. quark-quark

no high $p_{\rm T}$ leptons or photons in the final state

holds for the bulk of the total cross section

2. Lepton/photons with high p_T, example Higgs production and decay

October 2007

Important signatures for interesting events:

- leptons and photons
- missing transverse energy

requires high granularity (many channels)
good position, momentum and energy resolution

October 2007

- good measurement of leptons (high p_T) muons: large and precise muon chambers electrons: precise electromagnetic calorimeter and tracking
- good measurement of photons
- good measurement of missing transverse energy (E_T^{miss}) requires in particular good hadronic energy measurements down to small angles, i.e. large pseudo-rapidities (η ≈ 5, i.e. θ ≈ 1°)

Detector Design Aspects

 in addition identification of b-quarks and τ-leptons precise vertex detectors (Si-pixel detectors)

Very important: radiation hardness e.g. flux of neutrons in forward calorimeters 10¹⁷ n/cm² in 10 years of LHC operation

Trigger of interesting events at the LHC is much more complicated than at e⁺e⁻ machines

Online Trigger

- interaction rate: $\approx 10^9$ events/s
- max. record rate: ≈ 100 events/s

event size ≈ 1 MByte $\Rightarrow 1000$ TByte/year of data

- \Rightarrow trigger rejection $\approx 10^7$
- collision rate is 25 ns (corresponds to 5 m cable delay)
 trigger decision takes ≈ a few μs
 - ⇒ store massive amount of data in front-end pipelines while special trigger processors perform calculations

The ATLAS experiment

A Toroidal LHC ApparatuS

ATLAS in a nutshell:

- Large air toroid with μ chambers
- HCAL: steel & scintillator tiles
- ECAL: LAr
- Inner solenoid (2 T)
- Tracker: Si-strips & straw tubes (TRD)
- Si-pixel detector 10⁸ channels
 - 15 μm resolution

Status of ATLAS

Major structures assembled underground

all calorimeters installed

ATLAS: on track for LHC physics

J. Mnich: Early Physics at the LHC

99% of barrel µ chambers installed

Status of ATLAS

- Magnets
 - barrel toroid tested sucesfully (11/06)
 - inner solenoid: tested & field map taken

- 1 endcap toroid successfully tested (03/07) moved to IP1
- 2nd followed in June

October 2007

The CMS experiment

Compact Muon Solenoid

CMS in a nutshell:

- 4 T solenoid
- μ chambers in iron yoke
- HCAL: copper & scintillator
- ECAL: **PbWO₄** crystals
- All Si-strip tracker 220 m², 10⁷ channels
- Si-pixel detector similar to ATLAS

October 2007

Total weight

Overall length

Magnetic field

Layout of CMS

• 11 slices: 5 barrel and 2*3 endcaps

Lowering of CMS

Crane installedLowering starts in autumn 2006

October 2007

Status of CMS

CMS: major structures assembled on surface

- solenoid successfully operated at 4 Tesla (11/06), field map
- Iowering of central magnet slice (YB0) on February 28th

- 5/13 heavy pieces still to be lowered but all of known type
- 2nd endcap cabled, tested & commissioned on surface

October 2007

Status of CMS

- Silicon tracker ready
 - under test at surface
 - to be installed in August 2007

CMS tracker: ■ ≈ 220 m² of Si sensors ■ 10.6 million Si strips ■ 65.9 million Si pixel

• Pixel detector:

October 2007

- 2/3 of modules produced
- ready for installation end 2007

CMS: on track for LHC physics

Comparison of ATLAS and CMS

	ATLAS	CMS	
length	≈ 46 m	≈ 22 m	
diameter	≈ 25 m	≈ 15 m	
weight	≈ 7000 t	≈ 12000 t	

October 2007

J. Mnich: Early Physics at the LHC

Transverse View

.645 r

Comparison of ATLAS and CMS

Physics performance: comparison in terms of mass resolutions

Table 8

Mass resolution for various states in the different experiments (at a luminosity of 2×10^{33} cm⁻² s⁻¹ in the case of ATLAS and CMS)

	ATLAS (GeV c^{-2})	$CMS (GeV c^{-2})$	LHCb (GeV c^{-2})	ALICE (GeV c^{-2})
$B \rightarrow \pi \pi$	0.070	0.031	0.017	
$B \rightarrow J/\psi K_S^0$	0.019	0.016	0.010	
$Y \rightarrow \mu\mu$	0.152	0.050		0.107
$H(130 \text{ GeV} c^{-2}) \rightarrow \gamma\gamma$	1.55	0.90		
$H(150 \mathrm{GeV}c^{-2}) \to ZZ^* \to 4\mu$	1.60	1.35		
$A(500 \mathrm{GeV}c^{-2}) \to \tau\tau$	50.0	75.0		
$W \rightarrow jet jet$	8.0	10.0		
$Z'(3 \text{ TeV} c^{-2}) \rightarrow \mu\mu$	240	170		
$Z'(1 \mathrm{TeV}c^{-2}) \to \mathrm{ee}$	7.0	5.0	_	

From T. Virdee, Phys. Rep. 403-404 (2004) 401

L. L. Stren II

Trigger & DAQ system

Similar design for ATLAS & CMS

Example CMS: Collision rate 40 MHz Level-1 max. trigger rate 100 kHz[†] Average event size ≈ 1 Mbyte

† 50 kHz at startup (DAQ staging)

Filter farm:

- approx. 2000 CPUs
- easily scaleable

October 2007

- staged (lower lumi & saves money)
- uses offline software

The longest journey starts with the first step... Cosmic data taking with assembled detector components... December 2005 **Cosmic Muons in CMS** unertaind Settropingent Depitor/Ref H MB1 **August 2006:** cosmic with magnet on

- 2008 first physics year
 - machine closure April
 - first collisions in summer at 7 TeV proton energy
 - try to reach $10^{32}/\text{cm}^2/\text{s}$ $\int Ldt \le 1 \text{ fb}^{-1}$

2009 – 2010/11 two or three years at 1 – 2·10³³/cm²/s

- \geq 30 fb⁻¹ in total
- Important for precision physics and discoveries

Possible LHC Schedule

- \geq 2011 high luminosity running at 10³⁴/cm²/s
 - 100 fb⁻¹ per year
- 2015 Upgrade to Super LHC 10³⁵/cm²/s
 - under discussion
 - requires major machine and detector upgrades

