The Large Hadron Collider

Project at CERN

Joachim Mnich DESY

EMBL Forum on Science & Society 15 June 2009

- What?
- Why?
- How?

Introduction

Outline

Physics Motivation

Technological Challenges

Where are we today?

Status and Expectations

The Large Hadron Collider (LHC)

ALICE

- European Organization for Nuclear Research
- Founded in 1954
- 20 European Member States
- Located close to Geneva across the franco-swiss border
- Largest particle physics laboratory world-wide

CERN

Joachim Mnich | The Large Hadron Collider project at CERN LEMBL Forum on Science & Society

June 2009 | Page 4

The Large Hadron Collider (LHC)

LHC time table:

- Early 1980's: first ideas about a multi-TeV proton collider at CERN
 - Oct 1990: ECFA workshop on LHC in Aachen
- I6 Dec 1994: CERN council approves the LHC
- Feb 1996: approval of ATLAS and CMS
 - Apr 1998: start civil engineering
 - 7 Mar 2005: first dipole magnet installed
- 26 Apr 2007: last dipole installed
- 10 Sep 2008: first circulating beams
 - Oct 2009: first pp-collisions expected

The Large Hadron Collider (LHC)

- Proton-proton collider in the former LEP tunnel
- Highest ever energy per collission

14 TeV in the pp-system

cf. Tevatron at 2 TeV

 High luminosity (rate of pp-interaction) up to 10³⁴/cm²/s

- Conditions as 10⁻¹³ 10⁻¹⁴ s after the Big Bang
- 4 experiments:
 - ATLAS
 - CMS
 - LHCb specialised on b-physics
 - ALICE specialised for heavy ion collisions
- LHC and experiments were constructed in global collaborations

Joachim Mnich | The Large Hadron Collider project at CERN LEMBL Forum on Science & Society

June 2009 | Page

1 000 eV = 1 keV 1 000 000 eV = 1 MeV 1 000 000 000 eV = 1 GeV 1 000 000 000 eV = 1 TeV

Overall view of the LHC experiments.

Why? Physics Motivation

Theoretical Particle Physics

Relativity

- Mass is energy and energy is mass
- Producing heavy particles requires high energy
- Quantum mechanics
 - Particles are waves and waves are particles
 - High momentum p (or energy) means smaller wave length
- Uncertainty principle
 - Position and momentum are not defined with arbitrary accuracy
 - ...and God still plays dice
 - Elementary quantum processes are not deterministic, only probabilites are calculable
 - Experiments must be repeated frequently

Joachim Winich + The Large Hadron Collider project at CERN LEVIBL Forum on Science & Society

M. Planck

W. Heisenberg

Albert Einstein

Standard Model of Particle Physics

All known matter consists of four fundamental particle (fermions)

The sub- state of the state of the

	•				The state of the		Charge	;	Spin	A Contraction		
Leptons	v _e e⁻	ne ele			II Id	-neutrino	0		1/2 0	1/2		TYTY
	u	up	μ ⁻	m	ν _τ	tau-neut	rino			0	1/2	No. 1
Quarks	d	do	С	ch	n ^{τ−} tau			-1		1/2	ł	
		6	S	str	t b	top-quarl	k quark		+2	2/3 1/3	1/2 1/2	L. J. Star In
aller X to and	12 mil	1 4	-V.	12								

- There exist 2 copies of each fermion (called generations or families)
 - Identical, except for the mass
- Antimatter:
 - Each fermion has a partner with opposite charge
 e.g. the positron (e⁺) is the antiparticle of the electron (e⁻)

Standard Model of Particle Physics

 $F = G \frac{mM}{r^2}$

 $F = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$

Fundamental Interactions (forces):

- 1) Gravitation
 - Elementary particles: too weak, not part of the Standard Model
- 2) Electromagnetic Interactions
 - Electrostatic

Magnetism

- Bind electrons and nuclei to atoms and atoms to molecules

3) Weak Interactions

- Important in certain nuclear and particle reactions, e.g. neutron decay $n \to p \; e^- \; \nu_e$
- 4) Strong Interactions
 - Bind quarks in protons and neutrons

Standard Model of Particle Physics

- Fundamental Interactions are mediated by the exchange of particles
 - Spin 1, therefore called bosons
- Fundamental particles are mathematically described by symmetries

I ihr

- Local gauge symmetries

Interaction	Mediating Particle	Mass [GeV]	Symmetry Group
Gravitation	?	?	?
Electromagnetic	Photon γ	0	U(1)
Weak	W [±] ,Z Bosons	80, 91	SU(2)
Strong	Gluons g	0	SU(3)

Joachim Mnich | The Large Hadron Collider project at CERN | EMBL Forum on Science & Society |

June 2009 | Page 13

Open Questions

- The Standard Model is very succesful in describing phenomena up to a few 100 GeV
- But it leaves many open questions, e.g.
 - Why there are 3 copies of the fundamental fermions? Related to particle-antiparticle asymmetry in the universe?
 - What is the reason for U(1)×SU(2)×SU(3) Is there only one fundamental interaction at high energy?
 - Gravitation?
 - At high energy 10¹⁹ GeV gravitation matters
 - Origin of Mass?
 - Dark Matter

 Experiments at the LHC are expected to provide some answers to these fundamental questions

Origin of Mass: The Higgs Boson

- Concept of local gauge symmetries requires massless exchange particles
 - Uncertainty principle: massive exchange particle
 = limited reach of interaction
 - Ok for photon and gluons
 - Manifestly violated in case of W & Z Bosons!
- Solution is Higgs mechanism
 - Vacuum is filled with a field
 - Gives mass to W,Z bosons and fermions
 - Requires existence of the Higgs boson
 - Important: its mass must be less than 1 TeV LHC will definitely decide on this issue!

Dark Matter and Supersymmetry

Astronomy:

- Only about 5% of our universe are made of known matter!
- ≈ 20% dark matter
- ≈ 75% dark energy

- Symmetry between force and matter particles
- Predicts a mirror world of new particles (a shadow world like anti-matter)
- Solves many of the open questions
- Contains a particle for Dark Matter

Joachim Mnich | The Large Hadron Collider project at CERN LEMBL Forum on Science & Society

June 2009 | Page 16

How? Technological Challenges

2000: "Concept" of the CMS tracking detector

Sergio Cittolin

A Collider for the Terascale

- Electron-Positron Collider
 - Like DORIS & PETRA at DESY or LEP at CERN
 - Point-like particles
 - But limited in energy by synchrotron radiation
- Proton-(anti)proton collider
 - Higher energy reach limited by magnet bending power
 - But much harder for experiments

une 2009

Challenges for the LHC: Magnets

 Superconducting dipole magnets to keep 7 TeV protons on a circular path (r ≈ 3 km)

|B| = 8.33 Tesla

- 1232 dipole magnets needed each is 15 m long (+ quadrupoles, sextupoles, etc.)
 - 1.9 K operating temperature
 - Supraliquid Helium
 - Largest cryogenic facility in the world
 - Quench protection
 - Stored energy in one dipole: 8 MJ corresponds to a 40 t truck at 50 km/h

 LHC dipole design incorporates reversed field for oppositely rotating proton beams

LHC Dipoles

Around 1999: construction of dipoles start

LHC Dipoles

and the second

THE OWNER FILE ST

1/2

fi filis

EE

-

CHARLE E

a disert

SIDIE TO THE STATE

AND DUNING

AND REAL PROPERTY OF

Contraction of the

Dipoles in the LHC Tunnel

Cryogenics

- First cool down of an LHC sector (> 3 km) in April 2007
- I.9 K: colder than the universe

Challenges for LHC Detectors

- Protons are composite particles
 - Bags filled with quarks and gluons
 - Quark-quark and gluon-gluon collisions are the fundamental processes
 - Screened by interactions of other quarks & gluons
- LHC is filled with 2835 + 2835 proton bunches
 - Collisions every 25 ns 40 MHz crossing rate
- 10¹¹ protons per bunch
 - 25 pp interactions per crossing (pile-up)
 - Each bunch collision produces ≈ 1600 charged particles

A Collision Producing a Higgs Boson

with 25 pile-up interactions

Remove low energy tracks (p_T < 25 GeV)

 $H \rightarrow ZZ \rightarrow 4$ muons

Identify each trackrequires a highly granular detectorReconstruct every tracktakes a lot computing power

Joachim Mnich | The Large Hadron Collider project at CERN | EMBL Forum on Science & Society |

ne 2009 | Page 25

Example: CMS Tracking Detector

Silicon strip detector

16000 such modules built

≈100 µm

220 m² of silicon surface (almost a tennis court...)

the states

Largest silicon detector ever built

Joachim Mnich | The Large Hadron Collider project at CERN LEMBL Forum on Science & Society

11

10

CH

A Dream Becomes Reality...

Looking for a Needle in a Haystack

- Protons are large particles 10⁻¹⁵ m diameter
- Not pointlike as e.g. electrons (diameter < 10⁻¹⁸ m)
- Huge proton-proton interaction rate at the LHC
 - 10⁹ per second
 - 10⁸ per second in initial phase
- However, most interesting processes are rather rare
- E.g. about 1 Higgs boson per minute will be produced

Finding the Higgs Boson

Online trigger

- Only a tiny fraction of the collision can be stored for detailed inspection
 - Interaction rate ≈ 10⁹ events/s
 - Max. record rate ≈ 100 events/s event size ≈ 1 MByte ⇒ 1000 TByte/year
- Trigger rejection ≈ 10⁷
- Collision interval is 25 ns corresponds to 5 m cable delay
- Trigger decision takes a few µs (1st level)
 ⇒ store massive amount of data in front-end pipelines
 ⇒ massive parallel computing

The Worldwide Computing Grid

- 1000 TByte/year and experiment are still huge + simulation + calibration + reconstruction + ...
- Grid Computing a world-wide computing centre

Principle of Particle Physics Detectors

Slice through the CMS detector

ATLAS and CMS

- ATLAS and CMS are the two large multi-purpose detectors at the LHC
- Each collaboration counts about 2500 scientists & engineers from about 40 different countries

Map showing CMS collaborator countries around the world

International Collaboration

Brass casings of decommissioned shells of the Russian Nothern Fleet

Converted to brass absorbers for the CMS calorimeter

ATLAS: A Toroidial LHC ApparatuS

Joachim Mnich | The Large Hadron Collider project at CERN LEMBL Forum on Science & Society

June 2009 | Page 35

CMS: Compact Muon Solenoid

Beampipe in CMS

ALCO

Comparison ATLAS and CMS

Transverse View

4.645 m 3.850 n 2.950 m

	ATLAS	CMS
length	<mark>≈ 46 m</mark>	≈ 22 m
diameter	≈ 25 m	≈ 15 m
weight	≈ 7000 t	<mark>≈ 12000 t</mark>

Experiment to address the question of matter-antimatter asymmetry

Experiment addresses new state of matter: the quark-gluon plasma

ALICE

Heavy ion collisions, eg. Pb-Pb

Where are we today?

Status and Expectations

 First circulating beams on September 10, 2008

LHC Accident

- Major accident on September 19, 2008
 - Bad connection between 2 magnets (resistance >> 1 n Ω)
 - Heat load ≈ 10 W cannot be cooled away
 - Thermal runaway
- Quench protection of magnets worked well
- But light arc between magnets
 - Destroyed a Helium vessel
 - 2 tons of He effused
 - Shock wave in tunnel

Damage

Joachim Mnich | The Large Hadron Collider project at CERN | EMBL Forum on Science & Society

53 magnets inspected,

repaired & reinstalled

ALC: N

States.

- Improve protection systems
- Restart LHC in September 2009
- First collisions in October 2009
- Operation until end 2010
 - reduced energy (5 TeV)
- Detectors are ready and preparing for data taking with cosmic rays

Joachim Mnich | The Large Hadron Collider project at CERN LEMBL Forum on Science & Society

June 2009 | Page 47

Supersymmetry

- LHC will eclipse previous experiments and chart new territory in the parameter space
- Example: discovery reach as function of luminosity and model parameters which fix the mass scale of SUSY parameters

June 2009 | Page 48

En ball

Summary PHYSICS AT THE TERASCALE

- LHC is one of the largest scientific endeavours ever undertaken
- 25 years of preparation involving thousands of scientists all over the world
- Likely to be exploited for decades
- Results will change our view of the universe

Backup slides

Vision

Revolutionary advances in understanding the microcosm Connect microcosm with early Universe

and the second second

Particle Physics at the Energy Frontier with highest collision energies ever will change our view of the universe

A Collision Producing a Higgs Boson

Higgs couples proportional to masses ⇒ preferentially decaying into heaviest particle kinematically allowed

Higgs Boson Decay

Branching ratio versus m_H:

 Low mass (115 < m_H < 140 GeV H → bb make up most of the decays problem at the LHC because of the huge QCD background !

 Intermediate (140 < m_H < 180 GeV) H → WW opens up use leptonic W decay modes

 High mass (m_H > 180 GeV) H → ZZ → 4 leptons golden channel!

Joachim Mnich | The Large Hadron Collider project at CERN | EMBL Forum on Science & Society

June 2009 | Page 53