I.M. Gregor J. Mnich IEEE NSS Dresden

### EUDET: Detector R&D Towards the International Linear Collider



- The EUDET initiative
- EUDET activities
  - Joint Research Activities
  - Networking
- Conclusions



### **Detector Challenges at ILC**

#### Requirements for ILC

- Impact parameter resolution  $\sigma_{r\phi} \approx \sigma_{rz} \approx 5 \oplus 10/(p \sin^{\frac{3}{2}} \theta)$ 
  - Momentum resolution
    - $\sigma\left(\frac{1}{n_{\rm T}}\right) = 5 \times 10^{-5} (GeV^{-1})$
- Jet energy resolution

$$\frac{\sigma_{E}}{E} = \frac{30\%}{\sqrt{E}}$$

- Calorimeter granularity
- Pixel size

#### Compare to best performance to date

- Need factor three better than SLD  $\sigma_{r\phi} \approx \sigma_{r\tau} \approx 7.7 \oplus 33/(p \sin^{\frac{3}{2}} \theta)$
- Need factor 10 better than LEP (1)

$$\sigma\left(\frac{1}{p_{\rm T}}\right) = 5 \times 10^{-4} ({\rm GeV}^{-1})$$

Needs to be better than ZEUS

$$\frac{\sigma_E}{E} = \frac{55\%}{\sqrt{E}}$$

- Need factor ~200 better than LHC
- Need factor ~20 smaller than LHC
- Material budget, central 
  Need factor ~10 less than LHC
- Material budget, forward 
  Meed factor ~1000 less than LHC

### EUDET

- EUDET is an "Integrated Infrastructure Initiative (I3)" within the EU funded "6<sup>th</sup> framework programme"
- Support improvement of infrastructure for detector R&D with larger prototypes - but not the R&D itself



### **The EUDET Map**



# **EUDET Budget**



- Duration of 4 years
- Extension by 1 year until end 2010 to exploit infrastructures

#### EU approval pending

• 21.5 million EUR total

- 7.0 million EU contribution
- Manpower
- ≈ 57 FTE total
- ≈ 17 FTE funded by EU
- most of the resources for the development of the infrastructures

### **EUDET Structure**



- Validation of simulation
- Deep submicron radiation tolerant electronics

### **JRA1: PCMAG and Telescope**

- Large bore magnet:
  - 1Tesla, Ø≈85 cm, stand-alone He cooling, supplied by KEK
  - infrastructure(control, fieldmapping, etc.) through EUDET
  - Magnet fully instrumented at DESY and ready for use



- Pixel beam telescope:
  - 6 layers of Monolithic Active Pixel Sensor (MAPS) detectors
  - DEPFET and ISIS pixel detectors for validation
  - DAQ system
  - Demonstrator telescope in use since summer 2007



### **JRA1: Pixel Telescope**

#### Phase 1: "Demonstrator"

- First test facility will be available quickly for the groups developing pixels
- Use established pixel technology with analogue readout and no data reduction
- Available since summer 2007
- So far used by about 10 different users
- 50 million tracks alone in summer 2008



#### Phase 2: Final telescope

- Use pixel sensor with fully digital readout, integrated Correlated Double Sampling (CDS), and data sparsification
- The beam telescope will be ready early 2009

Daniel Haas, The EUDET Telescope, N58-3, this session

### JRA1: Field Map of PCMAG

- Field mapping done at DESY by CERN-PH group
- Available in different forms, depending on the needed accuracy and speed
- Field map is accurate to a few Gauss, depending on region of the PCMAG









### **JRA2: Tracking Detectors**

 Integrate the efforts of European institutions working on tracking detectors for the ILC

#### Large TPC prototype:

- Low mass field cage (for JRA1 magnet)
- modular end plate system for large surface GEM & µMegas systems
- development of prototype electronics for GEM & µMegas

#### Silicon TPC readout:

- Development MediPix → TimePix
- TPC diagnostic endplate module incl. DAQ
- Silicon tracking:
  - Iarge & light mechanical structure for Si strip detectors
  - cooling& alignment system prototypes
  - multiplexed deep-submicron FE electronics

### Large TPC Prototype

- a large field cage and prototype readout electronics
- developed to optimally use the magnet test facility
- field cage structure which combines light weight with excellent high voltage behaviour and mechanical stiffness





- field shaping strips developed
- field shaping system should guarantee field homogeneity of better than 1% throughout the active volume of the chamber



- readout electronics:
  - a programmable preamplifier shaper ASIC
  - a digitization system based on a modified ALTRO chip (ALICE)

Klaus Dehmelt, The Large TPC Prototype for an ILC Detector , N62-4

### **TPC Electronics**

schematics TPC electronics based on ALICE electronics



### **TPC Electronics**

### Prototype layout:

| <b>FANDARD</b> | Twint D  |       |       |                |   |  |  | -                          |
|----------------|----------|-------|-------|----------------|---|--|--|----------------------------|
|                | Wink25   |       |       |                |   |  |  | -14110-122                 |
|                | vin+0>   |       |       | -              |   |  |  |                            |
| လ              |          |       |       |                | 1 |  |  |                            |
|                |          |       |       |                |   |  |  | visione-ceo<br>visione-ceo |
| •              | vinet7>  |       |       |                |   |  |  |                            |
| 4              |          | antai | pic g | 1000<br>161000 |   |  |  |                            |
| _              |          |       |       |                |   |  |  |                            |
| <b>ク</b><br>山  | vive9>   |       |       |                |   |  |  |                            |
|                | Sindle   |       |       |                |   |  |  |                            |
| •              | vin-et2> |       |       |                |   |  |  | naturbuccii<br>naturbuccii |
|                | viteti D |       |       |                |   |  |  |                            |

1.5 mm

CHIP Availability

EUDET

-PCA16, 160 tested for 2048ch system -ALTRO 25MHz 160 tested for 2048ch system -ALTRO 40MHz for high time resolution

13

LC-TPC project -PCA16, 772 chips arrived . -25MHz ALTRO, 700 available

Full system available spring 2009

### Si TPC Readout

- Digital TPC : The "Ultimate Resolution"
- Upgrade Medipix2 chip to get 3D information: timestamp enables TOT info = Timepix
- Timepix has been produced with a good yield and is working -> first test beam
- Timepix covered with 4µm of amourphous Silicon with a standard Micromegas in He/C4H10 (80/20)



Paul Colas, Electron Counting and Energy Resolution Study from X-Ray Conversion in Argon Mixtures with an InGrid-TimePix Detector, N31-5



# **Silicon Tracking**

- enable groups to contribute to the development of long and thin Si-detector components
- providing common tools needed to test and simulate these sensors under real life conditions



- prototype of the alignment system to work out
  - alignment challenges,
  - the distortions handling
  - calibrations for the overall tracking system



- highly multiplexed, deep submicron front-end electronics
  - with low power consumption and the possibility for power cycling
  - DSM (130 nm)



support for large sensor R&D

### **Mechanical Infrastructure**



#### Convection Cooling System Prototype



#### Motorized 3-D Table

- Suitable for testing Silicon sensors, pixel and microstrips in a beam test.
- Tested device can be moved and rotated with respect the beam line.
- Built in a modular way, so that it can arrange different types of DUT, with alignment telescopes or without.
- Remote controlled steering motors



### **Central tracker prototype**

- Several detecting module prototypes have been assembled with sensors and electronics
- Tested at Lab test bench
- Beam test at DESY and CERN





### FE chip (130nm) 2 HPK 6' sensors



### **JRA3: Calorimeters**

- ECAL:
  - Scalable prototype with tungsten absorbers
  - Si-sensors & readoutchips

#### • HCAL:

- Scalable protoype
- multi-purpose calibration system for various light sensing devices

#### • Very Forward Calorimeter:

- Iaser-based positioning system
- Calibration system for silicon and diamond sensors
- FE Electronics and Data Acquisition System for the calorimeters









### **EUDET ECAL Prototype Module**

Construction of "real" module pursued parallel to demonstrator studies



# ECAL



- The ECAL "EUDET module 0"
  - barrel module prototype
    - 0.4t tungsten, 1.8m long
    - ~1/6 instrumented (12k ch.)
  - One tower for e test beam
    - Embedded electronics
    - 1.5mm gap (PCB + wafer + ASICs
    - Power pulsing
  - Test full scale mechanics, cooling, communication



Roman Poeschl, Response of the CALICE Si-W ECAL Prototype to Electrons, N33-7

# HCAL

#### HCAL

- Realistic structure
- Integrated electronics
- Readout architecture like ECAL
- Calibration system, test stand



B. Lutz, Test beam results from the CALICE tile hadron calorimeter, N63-3

### **FEM calculations**

FEM calculations for different geometrical configurations

#### **Calculations for Whole Barrel**



Maximum Deformation: 18.5 mm

Max. deformation: 2.9 mm

### **Calorimeter Electronics**

- VFCAL
- Electronics
  - Integration is key
  - Digital part next to sensitive analogue FE
  - Power pulsing, stability
- HaRDROC
  - 64 ch digital HCAL chip
  - Under test
- SKIROC
  - 36ch ECAL chip
  - At foundry (0.35 AMS)
- SPIROC
  - 36ch analogue (SiPM) HCAL chip
  - Under design
- More versions in the pipeline



M. Reinecke, Integration Prototype of the CALICE Tile Hadron Calorimeter, N30-178

# (Calorimeter) DAQ

- Scalable DAQ system
  - Commercial hardware where possible
  - Prototype for full detector and useable in test beam



e.g. off-detector receiver: off-the-shelf





**ASICs** 

FE

Data-link

**ODR** 

PC/s

Store

Control-link

### **Forward Calorimeter**

#### VFCAL

- Sensor test stands
- Irradiation test beam infrastructure
- Readout electronics
- Laser alignment system
  - µm level precision







Over short distances accuracies reached: Displacements in the x-y plane: +-0.5  $\mu$ m Displacements in z direction: +- 1.5  $\mu$ m

S. Schuwalow, BeamCal for ILC Detectors , N63-8

## **EUDET Networking Activity**

#### Information exchange

- www.eudet.org
- Annual workshops (open to everyone)
- Computing and analysis
  - Grid based computer cluster
  - Common software for test beams and ILC simulations
  - embedded in ILC software & simulation effort, already used

#### Shower simulation

- Support from Geant4 team
- Feedback of calorimeter testbeam results

#### Deep sub-micron rad-hard electronics

Access through CERN contracts



### **EUDET software ANALYS**

- ANALYS: development of a common data analysis and simulation infrastructure
- development of a software framework for simulation,
- analysis and comparison of test beam experiments
- embedded into existing GRID infrastructure

#### Strategy

- the test beam software effort is tightly integrated with the overall common ILC/LDC software effort !
- benefit from synergies where possible
- same for grid: integrate with common ILC grid activities

#### M. Killenberg, A Common Software Framework for the TPC Development, N20-1

J. Furletova, The Integration of DEPFET in to the EUDET Telescope , N30-138

#### Example: integration of DEPFET analysis



### **EUDET/LDC Software**



### **Transnational Access**

- Imposed by EU to foster trans-European access to research infrastructure
- Take advantage of it: apply for travel money!
  - For travel to DESY test beam
  - For travel to use any of the infrastructure created within the EUDET initiative
    - Magnet, beam telescope
    - Field cage, SiTPC, Si tracker
    - Calorimeter structure, readout, test stands

Open to any European group

EUDET or not

### **Transnational Access**

### You can use it!

- Already available:
  - DESY electron testbeam
  - demonstrator pixel telescope

EUDET provides in the framework of the Transnational Access scheme travel support for groups from the EU and countries associated to FP6 for using the following infrastructures:

TA1: DESY Test Beam

TA2: Experiments using infrastructure developed within the EUDET project



EUDET Telescope for test beam use.

- All others will be ready in 2009
- www.eudet.org

#### As example... high precision beam telescope based on pixel sensors:

- The two arm high precision telescope with different geometries:
  - All the mechanics and the cooling system for the reference sensors.
  - Operating support: mainly remote but also local in some circumstances.
- The Data Acquisition system; hardware and software.
  - You can connect your device to our Trigger Logic Unit; help is provided to set up your DAQ in our system.
- The analysis and reconstruction software EUTelescope.

With this telescope a pointing resolution of up to better than 3um can be achieved.

WWW.EUDET.ORG

Apply for travel money through the **Transnational Access** and use the EUDET infrastructures

EUDET is an "Integrated Infrastructure Initiative" within the EU funded "6th framework programme". The project aims at creating a coordinated European effort towards research and development for the next generation of large-scale particle detectors.

### Conclusions

- EUDET is an "Integrated Infrastructure Initiative (I3)" within the EU funded "6<sup>th</sup> framework programme"
  - an example of the high recognition of the ILC by the European Union
- Support improvement of infrastructure for detector R&D with larger prototypes
- Different Joint Research Activities (JRA)
  - encompassing all major ILC detector components
  - completion of most infrastructures early 2009
- Networking: large impact on structuring European ILC R&D efforts
- Transnational access: Infrastructure and support open to other detector R&D activities
- Future: develop EUDET towards overall detector integration and optimization

### **Backup Slides**

### **Important Links**

#### www.eudet.org

 You can apply for travel money through the Transnational Access and use the EUDET infrastructure

#### testbeam.desy.de

You can apply for test beam time at DESY



### **DESY Test beam**

- Bremsstrahlungs/conversion beam with E<sub>e</sub> up to 6 GeV.
- Beam momentum steered by magnet current by test beam user.
- Rates depending on beam line, energy, target material, collimator setting and operation.

| Rates  | Target   |           |  |  |  |
|--------|----------|-----------|--|--|--|
| Energy | 3mm Cu   | 1mm Cu    |  |  |  |
| 1 GeV  | ~2.2 kHz | ~ 0.5 kHz |  |  |  |
| 2 GeV  | ~4.6 kHz | ~1.1 kHz  |  |  |  |
| 3 GeV  | ~5.2 kHz | ~1.3 kHz  |  |  |  |
| 4 GeV  | ~4.4 kHz | ~1.1 kHz  |  |  |  |
| 5 GeV  | ~2.8 kHz | ~0.5 kHz  |  |  |  |
| 6 GeV  | ~1.5 kHz | ~0.2 kHz  |  |  |  |



In practice is the maximal event rate around 2 kHz. (3 GeV, 3mm Cu convert, Collimator ca. 5mm x 5mm

### **Testbeam Layout**



### **Facilities for Test Beam User**

- All three testbeam lines have
  - Interlock systems
  - Magnet control
  - Patch panels with preinstalled cable
  - Gas warning systems
  - Fast internet connection (DHCP)
- You can ask for:
  - Translation stages
  - Premixed gases
  - Superconducting Magnet (1T)
  - Beam Telescopes:
    - MVD Telescope
    - EUDET Telescope

You can apply for test beam time at DESY testbeam.desy.de

Or contact: testbeam-coor@desy.de

- You have to bring:
  - Your Data Acquisition incl. computers
  - Trigger scintillators





### Si TPC Readout

See electrons from an X-ray conversion one by one and count them, study their fluctuation.







### **Calorimeter Module**

3 mm side panel
 ⇒ M6 screw size

#### <u>Advantage</u>

Slim support structure

#### **Disadvantages**

- Uncertainties regarding stability
- High tolerance requirements (e.g.
- holes for screws, flatness of absorber
- plates)



# HCAL

Proof of principle -> reality

