DESY Strategy

11th Pisa Meeting on Advanced Detectors

Joachim Mnich

DESY 26 May 2009

Fundamental Research at DESY

- > DESY has a long successful history in three areas of basic science and high technology :
 - Particle physics
 - Research with X-rays (synchrotron radiation, FEL) and
 - Accelerator development.

- > Future:
 - Photon science new light sources PETRA III, FLASH, European XFEL
 - Accelerator: superconducting RF technology (TESLA)
 - Particle Physics: After end of HERA no HEP accelerator in Germany major challenge!

Long-term Strategy in Particle Physics

Structure of the proton Explore the Terascale Pr

Precision physics

Contributions to

- > Accelerators
- > **Detectors**
- > Physics

on an international scale

Supported by

- Strong and broad theory group
- Computing infrastructure (KIT and DESY)
- > Testbeam & other infrastructures

Helmholtz Alliance "Physics at the Terascale"

- > Network of complementary excellence between
 - 2 Helmholtz centres
 - 19 German universities and
 - I Max Planck-Institute

- > Project duration 2007 2012
- > Restructuring particle physics in Germany

Helmholtz Alliance "Physics at the Terascale"

Particle Physics at the Energy Frontier

Physics Analysis

Instrumentation at the Technology Frontier

Helmholtz Alliance "Physics at the Terascale"

> DESY is the central institute of the Helmholtz Alliance

Contributes to all key structures and instruments

> Unique feature of DESY in Germany: provides all infrastructures to support large experiments

From development to construction, operation and analysis
 i.e. testbeam, engineering, integration, computing, analysis centre, ...

Starting participation in LHC detector upgrades

In close collaboration in particular with German universities

- ATLAS pixel detector
- CMS tracker

ILC Accelerator: Exploiting Synergy with XFEL & FLASH

> Example:

Operation of TTF/ FLASH with ILC-like beam parameters: 9mA experiment → Unique opportunity at DESY because of TTF/ FLASH

Future: XFEL in many aspects a 10% prototype of the ILC

Joachim Mnich | 11th Pisa Meeting on Advanced Detectors

ILC: ILD Detector Concept

Detector R&D at DESY

> Focussed on ILC

> Embeded in EUDET project

- Vertex detector
- Tracking
- Calorimeter

Astroparticle Physics

> IceCube

- Almost ³/₄ installed in 2008/09
- ¼ of Digital Optical Modules produced at DESY

> Future: Cerenkov Telescope Array CTA

> DESY works on

- 12 m telescope prototype
- Drive and control and safety system
- Fast read-out system based on domino ring sampler
- HV concept for camera
- Timing studies for background suppression
- Trigger optimization

Generic Aspects of Detector R&D

- R&D for Silicon-Photomultipliers
 - → spin-off to medical applications (PET)
- R&D for high precision vertex detector technologies
 - → applications in other projects (MAPS @ STAR, DEPFET @ SuperBelle)

• development of a finely segmented hadronic calorimeter and forward calorimeter

- → advance fundamental knowledge of hadron shower
- → spin-off to beam instrumentation

key issues to validate Particle Flow

- development of a highly efficient time projection chamber
 application to T2K, RD51 at CERN
- strong role in the development of software and reconstruction tools for the ILC

Joachim Mnich | 11th Pisa Meeting on Advanced Detectors

Synergy with Photon Science

- New, brilliant photon source like FLASH, PETRA III and the XFEL need advanced detector technologies
 - Example pixel detectors
 - Requirements on data acquisition and processing (computing) are becoming similar to particle physics

Backup

Pixel Detector

> EUDET beam telescope

- 6 layers of Monolithic Active Pixel Sensor (MAPS) detectors
- DEPFET and ISIS pixel detectors for validation
- DAQ system

Phase 1: "Demonstrator"

ILC TPC

> Large protototype in DESY testbeam

- EUDET fieldcage & infrastructure
- Magnet from KEK
- Electronics developped within EUDET
- Endplate from US (Cornell)
- Various readout modules under test

LCTPC collaboration

ILC Calorimeters

- > CALICE collaboration
 - DESY: analog HCAL
- > From prototypes in testbeam

to ILC calorimeter

