# **DESY Particle Physics Programme**



#### **Joachim Mnich**

DESY

Isfahan 23 April 2009



# **DESY: Deutsches Elektronen-Synchrotron**

- > One of the largest German research centres
  - Founded in 1959
- > Two sites:
  - Hamburg



Zeuthen (since 1992)





# **Elementary Particle Physics at DESY**

- DESY has a long successful history in three areas of basic science and high technology:
  - Particle physics (one of 5 major laboratories world wide),
  - Research with X-rays (synchrotron radiation, FEL) and
  - Accelerator development.



# technology:

- Particle Physics at DESY Highlights:
  - DORIS: discovery of B-mixing
  - PETRA: discovery of the gluon
  - HERA: precise studies of the proton and the strong force



# **Accelerators at DESY**

### Circular:

### > DESY

- completed in 1964
- electrons of 7.4 GeV
- still used as pre-accelerator and testbeam facility (DESY III)

### > DORIS

- e⁺e⁻ collider (2\*3.5 GeV, upgraded to 2\*5 GeV)
- Completed 1974, particle physics until 1992
- Since 1980: synchrotron light source

### > PETRA

- e<sup>+</sup>e<sup>-</sup> collider, 2\*23 GeV
- Particle physics: 1978 1986 pre-accelerator for HERA until 2007
- As of 2009: synchrotron light source (PETRA III)

### > HERA

- Electron-proton collider 27/920 GeV
- Particle physics 1991 2007



### Linear:

### > TTF/FLASH

- 1997 completed 1997 as TESLA Test Facility
- Supra-conducting linear accelerator
- Since 2005 Free –Electron Laser at Hamburg (FLASH)
- First soft X-ray FELworld-wide

### European XFEL

Construction started in 2009



Isfahan April 2009 | Page 4

# **DESY Accelerators**





# **DESY: Long-term Strategy in Particle Physics**



Structure of the proton Explore the Terascale Pre

**Precision physics** 

**Contributions to** 

- > Accelerators
- > **Detectors**
- > Physics

### on an international scale

Supported by

- Strong and broad theory group
- Computing infrastructure (KIT and DESY)
- > Testbeam & other infrastructures



# **HERA: Electron-Proton Collider**

### > HERA data taking ended on 30 June 2007





# **HERA: Electron-Proton Collider**



|                                           |  | e⁺/ e⁻                                                | Protons |  |  |  |
|-------------------------------------------|--|-------------------------------------------------------|---------|--|--|--|
| Energy nominal (GeV)                      |  | 27.6                                                  | 920     |  |  |  |
| Energy range (GeV)                        |  | 10 – 35                                               | 460-920 |  |  |  |
| Luminosity                                |  | 5 x 10 <sup>31</sup> cm <sup>-2</sup> s <sup>-1</sup> |         |  |  |  |
| Circumference                             |  | 6.3 km                                                |         |  |  |  |
| Magn. Field (T)                           |  | 0.165                                                 | 4.7     |  |  |  |
| Beam current (mA)                         |  | 58                                                    | 160     |  |  |  |
| Bunches                                   |  | 200                                                   |         |  |  |  |
| e <sup>+</sup> / e <sup>-</sup> polarized |  |                                                       |         |  |  |  |
| Petra Injection (GeV)                     |  | 12                                                    | 40      |  |  |  |

### **Polarisation:**

40



# **HERA Detectors**

> 800 physicists



DES



**HERMES** 



Joachim Mnich | DESY Particle Physics Programme







# **HERA Physics**



- > Proton structure
- > Quark structure



# **Rutherford Scattering (1905)**









# **Hofstadter: Radius of nucleus**

> 1960





# **Deep-inelastic Scattering**

> 1969

$$\frac{d^2\sigma}{dq^2dx} = \frac{4\pi\alpha^2}{q^4x} [(1-y)F_2(x,Q^2) + xy^2F_1(x,Q^2)] \qquad \qquad {\rm SLAC}$$









# **DIS at HERA**



# **Scaling Violation**

Large *x*: quarks radiate gluons, photon probes smaller *x*,  $\Rightarrow$  F<sub>2</sub> falls with Q<sup>2</sup>. Small *x*: gluons split into sea quarks, photon resolves qq pair,  $\Rightarrow$  F<sub>2</sub> rises with Q<sup>2</sup>.



DGLAP equation of QCD. Now calculated in NNLO ( $\alpha_S^3$ ).



# **Parton Distribution Functions (pdf)**





# **New Results on PDF**



> Combination H1 and ZEUS



- > Significant improvement
- > Cross-calibration of systematic errors



# **New Results on PDF**



- > Large improvement wrt previous results
- > In particular low-x gluons

### > Note:

HERA II data still to be included



# **Application for LHC**

> Example: prediction for W cross section at LHC





### > Uncertainty reduced to approx. 3%



 $\overline{q}$ 

# **Charm and Bottom Content of the Proton**

### Expected: Charm: 20 - 30%, Bottom: few percent

Proton's charm and beauty





# **Structure of Quarks?**



# > R<sub>q</sub> < 0.74 ⋅ 10<sup>-18</sup> m (95% CL)



# **Tests of QCD**





# **Tests of Electroweak Interactions**

> Textbook example: electromagnetic and weak interaction interactions become equally strong at high energies

HERA I & II





# **Tests of Electroweak Interactions**

### > Polarised CC cross section





### > Search for Lepto-Quarks

## Heavy leptoquarks





# LHC

> DESY joined ATLAS and CMS in 2006

## > Contributions to

- Physics Analysis
- Technical coordination
- Trigger & DAQ
- Software & computing
- Tier-2 for ATLAS, CMS & LHC-b
- Smaller detector components ATLAS: ALFA, CMS: CASTOR
- > will not go into detail here...





# **Electron-Positron Linear Collider**

> DESY pursues for > 15 years development of electron-positron linear collider

# → TESLA TDR in 2001

### > Supra-conducting RF technology

- 2004: Selected technology for the International Linear Collider (ILC)
- > Global effort involving all major laboratories from all regions







# **Comparison Proton to Electron Colliders**



- Proton (anti-) proton colliders:
  - Energy range higher (limited by magnet bending power)
  - Composite particles, different initial state constituents and energies in each collision
  - Hadronic final states difficult
- Discovery machines
- Excellent for some precision measurements



- Electron positron colliders:
  - Energy range limited (by RF power)
  - Point-like particles, exactly defined initial state quantum numbers and energies
  - Hadronic final states easy
- Precision machines
- Discovery potential
- Precision is main motivation for a new electron positron collider
- Complementarity to proton machines, e.g. SppS/Tevatron and LEP



# **Comparison Proton to Electron Colliders**





# **Linear Collider Concepts**

- International Linear Collider ILC
  - superconducting acceleration
  - 31.5 MeV/m, 1.3 GHz
  - advanced design (c.f. XFEL)
  - 500 GeV (→ 1TeV)
  - Luminsosity: 2 x 10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>
- Compact Linear Collider CLIC
  - normalconducting acceleration
  - 100 MeV/m, 12 GHz
  - two-beam acceleration principle
  - up to several TeV
  - still in fundamental R&D phase

> ILC ready to go ahead, but limited in energy reach (≤ 1 TeV)

> CLIC in very early state, but may pave the way for higher energy







# Challenges

- > Quest for the highest possible accelerator gradient
- > ILC goal: 35 MV/m
- > Huge progress over the last 15 years
  - 25-fold improvement in perfomance/cost
- Major impact on next generation light sources:
  - XFEL designed for ≥ 25 MV/m
  - 10% prototype for ILC
- > Recall: LEP II used 7 MV/m

**TESLA 9-cell cavity:** 





# **FLASH/TTF: Prototype for XFEL and ILC**

- > 1 GeV electron LINAC based on SCRF
- > used for ILC studies and as light source (free electron laser)





# **Beam Tests at FLASH**





# European XFEL

### > Construction started January 2009



3.4km



# **XFEL: X-Ray Free Electron Laser**







# Getting to 35 MeV/m

- Acceleration gradient goal:
  - 35 MV/m in 9-cell cavities with production yield >80%
  - 50 MV/m have been reached with single cavities
  - Mass production reliability is the key problem









# Status of 9-cell Cavity R&D



Yield 45 % at 35 MV/m being achieved by cavities with a qualified vendor !!

# **ILC Physics Motivation**

- > ILC will complement LHC discoveries by precision measurements
- > Here just two examples:
- > 1) There is a Higgs, observed at the LHC
  - e+e- experiments can detect Higgs bosons
    without assumption on decay properties
    Higgs-Strahlungs process (à la LEP)
  - identify Higgs events in
    e+e− → ZH from Z → µµ decay
  - count Higgs decay products to measure Higgs BRs and hence (Yukawa)-couplings







# **ILC Physics Motivation**

- > Measure Higgs self-couplings
  - $e+e- \rightarrow ZHH$  to establish Higgs potential

 $e^+$ 

Z

Η

- Note: small signal above large QCD background
- > 2) There is NO Higgs (definite answer from LHC!)
  - something else must prevent e.g. WW
  - scattering from violating unitarity
  - at O(1 TeV)
  - strong electroweak symmetry breaking?
  - $\rightarrow$  study e+ e–  $\rightarrow$  WWvv, Wzev and ZZee events
  - need to select and distinguish W and Z bosons in their hadronic decays!
  - BR (W/Z → hadrons) = 68% / 70%
- > Many other physics cases: SM, SUSY, new phenomena,
- Need ultimate detector performance to meet the ILC physics case





Z

Η

# **Impact on Detector Design**

- Vertex detector: e.g. distinguish c- from b-quarks
  - goal impact parameter resolution
    - $\sigma_{r\phi} \approx \sigma_z \approx 5 \oplus 10/(p \sin \Theta^{3/2}) \ \mu m$  3 times better than SLD
  - small, low mass pixel detectors, various technologies under study
  - size O(20×20 μm<sup>2</sup>)

# Tracking:

- superb momentum resolution to select clean Higgs samples
- ideally limited only by Γ<sub>z</sub>
- →  $\Delta(1/p_T) = 5.10^{-5}$  /GeV (whole tracking system) 3 times better than CMS

# > Options considered:

- large silicon trackers (à la ATLAS/CMS)
- Time Projection Chamber with ≈ 100 µm point resolution (complemented by Si–strip devices)





# **Development of a High Resolution TPC**

- New concept for gas amplication at end flanges:
  - Replace proportional wires by
  - Micro Pattern Gas Detectors (MPGD)
- > GEM or MicroMegas
  - finer dimensions
  - two-dimensional symmetry
    - $\rightarrow$  no E×B effects



# LCTPC collaboration in DESY testbeam:









# **Impact on Detector Design**

### > Calorimeter:

- distinguish W- and Z-bosons in their hadronic decays
  - $\rightarrow$  30%/ $\sqrt{E}$  jet resolution!



2 times better than ZEUS

## > WW/ZZ $\rightarrow$ 4 jets:





# **Particle Flow Algorithm**

- Try to reconstruct every particle
  - measure charged particles in tracker
  - measure photons in ECAL
  - measure neutral hadrons in ECAL+HCAL
  - use tracker + calorimeters to tell charged from neutral
- Jet resolution

 $\boldsymbol{\sigma} = \boldsymbol{\sigma}_{\mathsf{charged}} \oplus \boldsymbol{\sigma}_{\mathsf{photons}} \oplus \boldsymbol{\sigma}_{\mathsf{neutral}} \oplus \boldsymbol{\sigma}_{\mathsf{confusion}}$ 

confusion term arises from

mis-assignment, double counting, overlapping clusters, ...

minimizing confusion term requires highly granular calorimeter

#### both ECAL and HCAL



- Average visible energy in a jet
  - $\approx 60\%$  charged particles
  - $\approx 30\%$  photons
  - $\approx 10\%$  neutral hadrons

| particles<br>in jet | fraction of energy in jet | detector  | single particle<br>resolution                 | jet energy<br>resolution   |
|---------------------|---------------------------|-----------|-----------------------------------------------|----------------------------|
| charged particles   | 60 %                      | tracker   | $rac{\sigma_{p_t}}{p_t}\sim 0.01\%\cdot p_t$ | negligible                 |
| photons             | 30 %                      | ECAL      | $\frac{\sigma_E}{E}\sim 15\%/\sqrt{E}$        | $\sim 5\%/\sqrt{E_{jet}}$  |
| neutral hadrons     | 10 %                      | HCAL+ECAL | $\frac{\sigma_E}{E} \sim 45\%/\sqrt{E}$       | $\sim 15\%/\sqrt{E_{jet}}$ |

# **Development of PFA Calorimeter**

### > Simulated ILC event



### > Testbeam data



> CALICE collaboration



# **Detector Development**

- > Detector Concepts:
- > 3 LOIs submitted in March 2009



http://www.ilcild.org/documents/ ild-letter-of-intent

http://silicondetector.org/display/SiD/LOI

http://www.4thconcept.org/4Lol.pdf







# Summary

### > HERA experimental programme finished

- Structure of the proton, important input fir the LHC
- Tests of QCD and electrowek theory
- Searches for new physics

### > Preparation for the ILC in full swing

Prepare for proposal in 2012 (or earlier)

### > DESY will remain strong laboratory for particle physics

- HERA analysis
- LHC
- Linear Collider (accelerator and detector)



# **ILC: Technical Design Phase and Beyond**



