Experiments at the

Large Hadron Collider

Joachim Mnich DESY

Helmholtz International School Calculations for Modern and Future Colliders CALC2009

TADO USE SHO

July 13, 2009

Outline

- The Large Hadron Collider
- The experiments
- Some examples for (early) physics
 - SM tests
 - SM Higgs search
 - SUSY(MSSM)
- LHC status and prospects

The Large Hadron Collider LHC

LHCh

The Large Hadron Collider (LHC)

- Proton-proton collider in the former LEP tunnel
 - Highest ever energy per collission
 - 14 TeV in the pp-system
 - cf. Tevatron at 2 TeV
- High luminosity
 - up to 10³⁴/cm²/s
- Conditions as 10⁻¹³ 10⁻¹⁴ s after the Big Bang
- 4 experiments:
 ATLAS
 - CMS
 - LHCb specialised on b-physics
 - ALICE specialised for heavy ion collisions
- LHC and experiments were constructed in global collaborations

July 2009

The Large Hadron Collider (LHC)

LHC time table:

- Early 1980's: first ideas about a multi-TeV proton collider at CERN
 - Oct 1990: ECFA workshop on LHC in Aachen
- I6 Dec 1994: CERN council approves the LHC
- Feb 1996: approval of ATLAS and CMS
 - Apr 1998: start civil engineering
 - 7 Mar 2005: first dipole magnet installed
- 26 Apr 2007: last dipole installed
- 10 Sep 2008: first circulating beams
 - Oct 2009: first pp-collisions expected

Challenges for the LHC: Magnets

 Superconducting dipole magnets to keep 7 TeV protons on a circular path (r ≈ 3 km)

|B| = 8.33 Tesla

- 1232 dipole magnets needed each is 15 m long (+ quadrupoles, sextupoles, etc.)
 - 1.9 K operating temperature
 - Supraliquid Helium
 - Largest cryogenic facility in the world
 - **Quench protection**
 - Stored energy in one dipole: 8 MJ corresponds to a 40 t truck at 50 km/h

 LHC dipole design incorporates reversed field for oppositely rotating proton beams

July 2009

LHC Dipoles

Around 1999: construction of dipoles start

LHC Dipoles

and the second

THE OWNER FIL PLAN

1/2

fi filis

EE

-

CHARLE E

a disert

SIDIE TO THE STATE

AND DUNING

AND REAL PROPERTY OF

Contraction of the

Dipoles in the LHC Tunnel

First cool down of an LHC sector (> 3 km) in April 2007

Cryogenics

I.9 K: coldest place in the universe

July 2009

Page

Challenges for LHC Detectors

- Protons are composite particles
 - LHC collides protons on protons
 - But collisions of quarks and gluons are the fundamental processes
 - Screened by interactions of other quarks & gluons (underlying event)
- LHC is filled with 2835 + 2835 proton bunches
 - Collisions every 25 ns 40 MHz crossing rate
- 10¹¹ protons per bunch
 - 25 pp interactions per crossing (pile-up)
 - Each bunch collision produces ≈ 1600 charged particles

A Collision Producing a Higgs Boson

with 25 pile-up interactions

Remove low energy tracks (p_T < 25 GeV)

 $H \rightarrow ZZ \rightarrow 4$ muons

Identify each track
 Reconstruct every track

requires a highly granular detector

takes a lot of computing power

Example: CMS Tracking Detector

11

10

CH

Silicon strip detector

16000 such modules built

≈100 µm

220 m² of silicon surface (almost a tennis court...)

And Maria

Largest silicon detector ever built

A Dream Becomes Reality...

Cross Section of Various SM Processes

 \Rightarrow Low luminosity phase 10³³/cm²/s = 1/nb/s

approximately

- > 10⁸ pp interactions
- > 10⁶ bb events
- > 200 W-bosons
- 50 Z-bosons
- 1 tt-pair

will be produced per second and

> 1 light Higgs

per minute!

The LHC is a b, W, Z, top, Higgs, ... factory!

The problem is to detect the events!

Experimental Signatures

1. Hadronic final states, e.g. quark-quark

no high $p_{\rm T}$ leptons or photons in the final state

holds for the bulk of the total cross section

2. Lepton/photons with high p_T, example Higgs production and decay

- Important signatures for interesting events: - leptons and photons
- missing transverse energy

- good measurement of leptons (high p_T) muons: large and precise muon chambers electrons: precise electromagnetic calorimeter and tracking
- good measurement of photons
- good measurement of missing transverse energy (E_T^{miss}) requires in particular good hadronic energy measurements down to small angles, i.e. large pseudo-rapidities (η ≈ 5, i.e. θ ≈ 1°)

Detector Design Aspects

 in addition identification of b-quarks and τ-leptons precise vertex detectors (Si-pixel detectors)

Very important: radiation hardness e.g. flux of neutrons in forward calorimeters 10¹⁷ n/cm² in 10 years of LHC operation

Trigger of interesting events at the LHC is much more complicated than at e⁺e⁻ machines

Online Trigger

- interaction rate: $\approx 10^9$ events/s
- max. record rate: ≈ 100 events/s

event size ≈ 1 MByte $\Rightarrow 1000$ TByte/year of data

- \Rightarrow trigger rejection $\approx 10^7$
- collision rate is 25 ns (corresponds to 5 m cable delay)
 trigger decision takes ≈ a few μs
 - ⇒ store massive amount of data in front-end pipelines while special trigger processors perform calculations

The ATLAS experiment

A Toroidal LHC ApparatuS

ATLAS in a nutshell:

- Large air toroid with μ chambers
- HCAL: steel & scintillator tiles
- ECAL: LAr
- Inner solenoid (2 T)
- Tracker: Si-strips & straw tubes (TRD)
- Si-pixel detector 10⁸ channels
 - 15 μm resolution

The CMS experiment

Compact Muon Solenoid

CMS in a nutshell:

- 4 T solenoid
- μ chambers in iron yoke
- HCAL: copper & scintillator
- ECAL: PbWO₄ crystals
- All Si-strip tracker 220 m², 10⁷ channels
- Si-pixel detector similar to ATLAS

FORMARD MUON CHAMBERS TRA CEER CRYSTAL ECAL HCAL CALORMETER CMS

RETURN YOKE

SUFERCON DUCTING

COIL

Total weight : 12,500t. Overall diameter : 15.00m Overall length : 21.60m Magnetic field : 4 Tesla

CMS: Compact Muon Solenoid

Beampipe in CMS

ALCO

Comparison ATLAS and CMS

Transverse View

	ATLAS	CMS	
length	<mark>≈ 46 m</mark>	≈ 22 m	
diameter	≈ 25 m	≈ 15 m	
weight	≈ 7000 t	<mark>≈ 12000 t</mark>	

Joachim Mnich | Experiments at the LHC | CALC2009

4.645 m 3.850 n 2.950 m

LHC Jet Physics

-

Jet physics at the LHC

• E_T spectrum, rate varies over 11 orders of magnitude

Test QCD at the multi-TeV scale

Jet Physics

July 2009

CMS: detailed study of statistical and systematic errors

- 1 fb⁻¹: early measurement
- 10 fb⁻¹: asymptotic reach, best calibrated & understood detector, improved theory etc.

W Mass at the LHC

CMS	Source of uncertainty	uncertainty wi	ΔM_W [MeV/c ²] ith 1 fb ⁻¹	uncertainty with	$\Delta M_W [{ m MeV/c^2}]$ h 10 fb ⁻¹		
Contraction of the second seco	scaled lepton- $p_{\rm T}$ method applied to W $ ightarrow { m e} u$						
	statistics	-	40		15	2000	
	background	10%	10	2%	2		
	electron energy scale	0.25%	10	0.05%	2	200	
	scale linearity	0.00006/ GeV	30	<0.00002/GeV	<10	1052	
	energy resolution	8%	5	3%	2	1 and	
and the second	MET scale	2%	15	<1.5%	<10	2	
1.10	MET resolution	5%	9	<2.5%	< 5	-1	
A Carlos	recoil system	2%	15	<1.5%	<10		
and the	total instrumental		40		<20	- 1	
and the state	PDF uncertainties		20		<10	EV.P.	
THE IS	Γ_W		15		<15	4.7.5	
- distant	$p_{\mathrm{T}}^{\mathrm{W}}$		30		30 (or NNLO)	in the	
Tree 340	transformation method applied to $W \rightarrow \mu \nu$						
and the stand	statistics		40		15	LT W LT	
	background	10%	4	2%	negligible	the state of the state	
	momentum scale	0.1%	14	<0.1%	<10	All and	
	$1/p^T$ resolution	10%	30	<3%	<10	1. 18.T.	
in the second	acceptance definition	η -resol.	19	$< \sigma_{\eta}$	<10	i land	
Street Street	calorimeter $E_{\rm T}^{\rm miss}$, scale	2%	38	$\leq 1\%$	<20	1.341	
- Alto	calorimeter $E_{\rm T}^{\rm miss}$, resolution	5%	30	<3%	<18	Constant of	
Non in the	detector alignment		12	_	negligible	EF-	
Calling and	total instrumental		64		<30	ALL ALL	
THE WAR	PDF uncertainties		≈ 20		<10	and the second	
	Γ_W		10		< 10	15.6	
AND MALE AND AND AND AND AN ADDRESS OF ADDRESS OF ADDRESS AND ADDR			-			CALL TIME . BY	

Di-Boson Production at the LHC

- very interesting: WW,ZZ final states not yet observed at the Tevatron first WZ events observed early 2007
- test triple gauge boson couplings (TGC)
 - γWW and ZWW precisely fixed in SM
 - γZZ and ZZZ do not exist in SM!

Top Physics at the LHC

- Cross section ≈ 100 times larger than at the Tevatron 7 pb Tevatron > 800 pb LHC
- LHC will eclipse existing knowledge on the top despite problems like
 - pile-up
 - Iess striking signatures

proton - (anti)proton cross sections

Why Top Physics at the LHC?

• ttbar production is standard candle at high Q²

- relatively precisely measureable and calculable
- cross checks impact of pdf, underlying event, pile-up, ...

ttbar production
 ≈ 90% gluon fusion

pprox 10% quark annihilation

 $q(p_1)$ x_1 $t(p_3)$ $\bar{q}(p_2)$ x_2 $\bar{t}(p_4)$

i.e. similar to e.g. Higgs production

- Important background reaction for many New Physics channels
 - high cross section
 - presence of high p_T lepton(s)
 - multi-jet final states

Top decay: ≈ 100% t → bW Other rare SM decays:

• CKM suppressed t \rightarrow sW, dW: 10⁻³ –10⁻⁴ level

Top Quark Decay

• & non-SM decays, e.g. $t \rightarrow bH^+$

In SM topologies and branching ratios are fixed: • expect two b-quark jets

plus W⁺W⁻ decay products:

- 2 charged leptons + 2 neutrinos
- I charged lepton + 1 neutrino + 2 jets
- 4 jets (no b-quark!)

Re-discovery of top possible with low luminosity (< 100 pb⁻¹)

Top Pairs at the LHC

Semi-leptonic events

 \rightarrow total top mass error ≤ 1 GeV possible with O(10 fb⁻¹) of well understood data

July 2009
Search for New Physics at the LHC

Some general considerations on LHC early phase

- time scale for discoveries not necessarily determined by ramp-up of integrated luminosity
- but progress and level of detector understanding
 - malfunctions, calibration, alignment
- difficult issues
 - jets
 - missing ET
 - forward detectors
- less critical
 - lepton based measurements in particular muons

Understanding of the Detector

• Example for an easy case: muon pairs

Understanding of the Detector

Difficult example: missing ET

- is a very powerful tool to look for new physics
- but very complicated variable and difficult to understand:
- collison effects
 - pile-up
 - underlying event
- beam related background
 - beam halo
 - cosmic muons
- detector effects
 - instrumental noise
 - dead/hot channels
 - Inter-module calibration

Once the mass is know all other Higgs properties are fixed!

SM Higgs Boson Production at the LHC

- Gluon-gluon fusion and W, Z fusion are dominant
 Guardian data and the Transformation of the second sec
- Cross section at the Tevatron almost factor 100 smaller!

Higgs couples proportional to masses ⇒ preferentially decaying into heaviest particle kinematically allowed

Higgs Boson Decay

Branching ratio versus m_H:

 Low mass (115 < m_H < 140 GeV H → bb make up most of the decays problem at the LHC because of the huge QCD background !

 Intermediate (140 < m_H < 180 GeV) H → WW opens up use leptonic W decay modes

 High mass (m_H > 180 GeV) H → ZZ → 4 leptons golden channel! What to do in the preferred low mass region, i.e. $m_H < 140$ GeV?

Higgs Boson Decay

- use H →γγ
- very low branching ratio O(10-3)
- but clean signature

internal loop with heavy charged particle W boson or top quark

10

10

10

10

10

10 10

10_{_8} 10_{_9}

[(H) [GeV]

→ albe →ss

 $\rightarrow c\overline{c}$

 $H \rightarrow$

 $H \rightarrow b\overline{b}$

 \rightarrow qq

10

m_H [GeV]

 $H \rightarrow W^+W^-$

 $\mathsf{H}
ightarrow \mathsf{ZZ}$

 $\mathbf{H} \rightarrow \mu^{+}\mu^{-}$

 $H \rightarrow tt$

 $H \rightarrow \gamma \gamma$

 $\mathbf{H} \rightarrow \mathbf{Z} \gamma$

10²

10³

Total width of the Higgs (= inverse lifetime)
at low masses Higgs is a very sharp resonance

$\Gamma_{\rm H} \ll 1 { m MeV}$

• $\Gamma_{\rm H}$ explodes once H \rightarrow WW, ZZ open up for m_H \rightarrow 1 TeV

 $\Gamma_{\rm H} \approx m_{\rm H}$

STATES -

Combine all search channels and determine expected significance as function of the luminosity and Higgs mass:

Search for the Higgs Boson at the LHC

corresponds to 1 year at a luminosity of 10³³/cm²/s

SUSY Search at LHC

Production of SUSY particles at the LHC

- squarks and gluinos are pair-produced through strong interaction, i.e. high cross sections
- but also sleptons and other SUSY particles can be pair-produced
- SUSY particles decay in a chain to SM particles plus the LSP

Signature:

- Ieptons, jets and missing E_T
- depend of SUSY particles produced, on their branching ratios etc.

Strategy to discover SUSY at the LHC:

- look for deviation from SM in distributions
 e.g. multi-jet + E_T^{miss}, multilepton+ E_T^{miss}
- establish SUSY mass scale
- try to determine model parameters
 (difficult!)

Squarks and Gluinos

- Strongly produced, cross sections comparable to QCD cross sections at the same mass scale
- If R-parity conserved, cascade decays produce distinctive events: multiple jets, leptons, and E_T^{miss}

and the second

• Typical selection: $N_{iet} > 4$, $E_T > 100, 50, 50, 50$ GeV, $E_T^{miss} > 100$ GeV

• Low mass SUSY ($M_{sp} \approx 500 \text{ GeV}$) accessible with O(100 pb⁻¹)

Early SUSY Searches

- However time to discovery will be determined by
 - time to understand detector performance, e.g. E_T^{miss}
 - time to collect control samples e.g. W+jets, Z+jets, top,...

Joachim Mnich | Experiments at the LHC | CALC200

July 2009 | Page 49

Example: discovery reach as function of luminosity and model parameters which fix the mass scale of SUSY parameters

SUSY Search at LHC

- achievable limits exploiting E_T^{miss} signatures
- requires very good understanding of detectors

Conclusion:

- LHC will eclipse today's limits on SUSY particles and parameters
- or discover SUSY if it exists at the TeV scale

July 2009

Where are we today?

Status and Expectations

 First circulating beams on September 10, 2008

LHC Accident

- Major accident on September 19, 2008
 - Bad connection between 2 magnets (resistance >> 1 n Ω)
 - Heat load ≈ 10 W cannot be cooled away
 - Thermal runaway
- Quench protection of magnets worked well
- But light arc between magnets
 - Destroyed a Helium vessel
 - 2 tons of He effused
 - Shock wave in tunnel

Damage

53 magnets inspected, repaired & reinstalled

July 2009 | Page 53

ALC: N

- Improve protection systems
- Restart LHC in September 2009
- First collisions in October 2009
- Operation until end 2010
 - reduced energy (4-5 TeV)
- Detectors are ready and preparing for data taking with cosmic rays

Summary & Outlook

- LHC start second half 2009
 - Collisions at 4-5 TeV energy (single beam)
 - 1st run continously until end 2010
 - expected luminosity: a few 100 pb-1
- Detectors are ready for data taking
- The LHC experiments will
 - further improve knowledge on W boson, top quarks, QCD
 - will probe physics at the smallest distance scale
 - will answer the question if there is a Higgs boson or not
 - probe models like SUSY on the (multi-)TeV scale

Very exciting times are ahead of us!

A Collider for the Terascale

- Electron-Positron Collider
 - Like DORIS & PETRA at DESY or LEP at CERN
 - Point-like particles
 - But limited in energy by synchrotron radiation
- Proton-(anti)proton collider
 - Higher energy reach limited by magnet bending power
 - But much harder for experiments

Comparison of ATLAS and CMS

Physics performance: comparison in terms of mass resolutions

Table 8

Mass resolution for various states in the different experiments (at a luminosity of 2×10^{33} cm⁻² s⁻¹ in the case of ATLAS and CMS)

	ATLAS (GeV c^{-2})	$CMS (GeV c^{-2})$	LHCb (GeV c^{-2})	ALICE (GeV c^{-2})
$B \rightarrow \pi \pi$	0.070	0.031	0.017	
$B \rightarrow J/\psi K_S^0$	0.019	0.016	0.010	
$Y \rightarrow \mu\mu$	0.152	0.050		0.107
$H(130 \text{ GeV} c^{-2}) \rightarrow \gamma\gamma$	1.55	0.90		
$H(150 \mathrm{GeV}c^{-2}) \to ZZ^* \to 4\mu$	1.60	1.35		
$A(500 \mathrm{GeV}c^{-2}) \to \tau\tau$	50.0	75.0		
$W \rightarrow jet jet$	8.0	10.0		
$Z'(3 \text{ TeV} c^{-2}) \rightarrow \mu\mu$	240	170		
$Z'(1 \mathrm{TeV}c^{-2}) \to \mathrm{ee}$	7.0	5.0	_	

July 2009

From T. Virdee, Phys. Rep. 403-404 (2004) 401

LUMBER OF STATE

Experiment to address the question of matter-antimatter asymmetry

Joachim Mnich | Experiments at the LHC | CALC2009

July 2009 | Page

Experiment addresses new state of matter: the quark-gluon plasma

ALICE

Heavy ion collisions, eg. Pb-Pb

- Hard scattering processes dominated by QCD jet production
- Originating from quark-quark, quark-gluon and gluon-gluon scattering
- colored objects fragment
 - \rightarrow observation of jets with high p_{T} in the detectors
- Studies of jet production is important
 - test of the experiment
 - test of the theory, down to the smallest distances
- new physics, e.g. quark substructure?

Measurement of $\boldsymbol{\alpha}_s$ at LHC limited by

- > PDF (3%)
- **Renormalisation & factorisation scale (7%)**
- Parametrisaton (A,B)

 $\frac{d\sigma}{dE_{T}} \sim \alpha_{S}^{2}(\mu_{R})A(E_{T}) + \alpha_{S}^{3}(\mu_{R})B(E_{T})$

10% accuracy α_s(m_Z) from incl. jets

- Improvement from 3-jet to 2-jet rate?
- Verification of running of α_s and test of QCD at the smallest distance scale
- > $\alpha_s = 0.118$ at m_Z > $\alpha_s \approx 0.082$ at 4 TeV (QCD expectation)

• Any improvement at the LHC requires control of systematic error to 10⁻⁴ level

W Mass at the LHC

- take advantage from large statistics $Z \rightarrow e^+e^-$, $\mu^+\mu^-$
- most experimental and theoretical uncertainties cancel in W/Z ratio e.g. Scaled Observable Method

Top Quarks at the LHC

ATLAS Atlantis Event: full_\$ATLAS_

Massive gauge bosons have three polarization states

At LEP in $e^+e^- \rightarrow W^+W^-$: determine W helicity from lepton (quark) decay angle in W rest frame θ^*

W Polarization

• $(1 \pm \cos \theta^*)^2$ transverse

sin²θ*
 longitudinal

Search for the Higgs Boson

1. Quadratically divergent quantum corrections to the Higgs boson mass are avoided

(Hierarchy or naturalness problem)

- 2. Unification of coupling constants of the three interactions seems possible
- 3. SUSY provides a candidate for dark matter,

Joachim Mnich | Experiments at the LHC | CALC

4.

The lightest SUSY particle (LSP)

Why SUSY?

A SUSY extension is a small perturbation, consistent with the electroweak precision data

Early SUSY Searches

Inclusive searches for 1 fb-1

Page

