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Outline

> Lecture 1l

= Future particle physics at the energy frontier: case for a Linear Collider

= Linear Collider Concepts
= Experimental Challenges

= Detector Concepts

> Lecture 2

= R&D for detector components
= Vertex detector
= Tracking detectors

= Calorimeters
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Elementary Particle Physics: Challenges and Visions

> Particle Physics entering Terascale

= Start of the Large Hadron Collider (LHC) at CERN
> Expect answers to fundamental questions

= Origin of mass (Higgs)

Mystery of Dark Matter stars Danyon neutrinos
dark energy

dark matter

Supersymmetry

Extra space dimensions

Grand Unification
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Future of Particle Physics at the Energy Frontier

> LHC and its upgrades

= Luminosity

= Energy (?)

> Electron-Positron Linear Collider

Electrons Detectors Electron source Positrons
.,

= |[LC (supra-conducting technology) <
= CLIC (two-beam acceleration) (_,..

= Muon collider (?)

> Here: emphasis on detector challenges for Linear Collider
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Comparison Proton and Electron Colliders

p p e ° s B
= Proton (anti-) proton colliders: = Electron positron colliders:
= Energy range higher (limited by = Energy range limited (by RF
magnet bending power) power)
= Composite particles, different = Point-like particles, exactly
initial state constituents and defined initial state quantum
energies in each collision numbers and energies
= Hadronic final states difficult = Hadronic final states easy
= Discovery machines = Precision machines
= Excellent for some precision = Discovery potential

measurements

= Precision is main motivation for a new electron positron collider
* Complementarity to proton machines, e.g. SppS/Tevatron and LEP
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Electron Positron Collider

= The e+e- cross section drops ~1//s

10°

* The key parameters for a com-
petitive ete- machine are

= energy reach = o
L &
L |
luminosity )
i
E
strive for few 1034/cm?/s it [ 4
1 E y
(comparable to LHC) 5
IHOCGe Y
. el
10 - At :
0 200 400 600 g00 1000

Recall: 10°*4/cm?/s corresponds to 100 fb-! per year
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Linear Collider Concepts

= |nternational Linear Collider ILC
= superconducting acceleration
= 31.5MeV/m, 1.3 GHz
= advanced design (c.f. XFEL)
= 500 GeV (— 1TeV)
* | uminsosity: 2 x 1034 cm=2 s

= Compact Linear Collider CLIC U
= normalconducting acceleration T
- 100 MeV/m, 12 GHz . S
= two-beam acceleration principle w‘;‘mlf-#f——w |
= up to several TeV D B
= still in fundamental R&D phase h T

* Summary:
" [L.C ready to go ahead, but limited in energy reach (<1 TeV)
* CLIC in very early state, but may pave the way for higher energy
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Higgs

SM Higgs Production at the ILC

—— WW-fusion

@ Dominant production mechanisms: Higgsstrahlung and WW-fusion
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Higgs

* Model independent Higgs
measurement
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Higgs Couplings

= Measuring the couplings of the Higgs to massive particle

* Check coupling-mass relation
= The smoking gun!

i) 1
Coupling Mass Relation i
1 t g
H £
g 'd 5 4
£ [/ &
;ﬁ 0.1 g
g e @
g /'
: b~ 107
%n /_/z/
& 001 t,”
g s
....i . P— .....110 a . .....1.60 s P— 103 | | | | | | |
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Verification of the Higgs Potential

2| |2 4 2
v V(@)= |0 +O[ p’<0 A>0
- 2
Vacuum expectation value V = /- u* /A
o,
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SM Double Higgs-strahlung: ¢ ¢ — ZHH : " Measurement Of double
o] : Higgs-strahlung: e* e— HHZ
0.2
e LN j Agyuy/ Eupn = 0.22
0.1_— ]
[ * Measurement of g,
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= Production of 10° Z-Bosonen at \'s = 91 GeV

= 100-fold LEP I statistics
= polarisation (as SLC) Comparison today‘s SM-Fits
=30 fb! =1/2 year with Giga-Z:

- 20

>

LEP/SLC/Tevatron Giga-Z

my, 91 187,5 £ 2,1 MeV ---
sin“9w | 0,23153 +0,00016 | +0,000013

15

Ay 0,899 + 0,013 + 0,001 o
R, 0,21629 + 0,00066 | + 0,00014 |
My 80392 +29 MeV | +6MeV |,

iy
10

Comparison to direct
Higgs mass measurement
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Supersymmetry
" If mg,iy <2 TeV = Discovery at the LHC

SUSY will be the New Standard Model

= Scalar partners of fermions Template mass spectra:

~ ~ o~ ~ ~ ~ mSUGRA GMSB AMSB
eR’eL9l’lRﬂl’LL9"'9tl’tl 800 | i i i -
- g — b1_3 ':IR.L -%]f -
= Fermionic partners of bosons i =% ]
. 'q —
Ni NO NO ~ — 600 | i
LAY SRR FER E S iz i
= — 1L bs -
g400fF T —h  om g i
o — el v Xg — -~ -
= > 2 Higgs-doublets [ ® 5 W]
» i, = -

+ vz

h,H,A,H" 200 A % o . A
[ - S < S p— nie A ]
[« v @t ]

Advantages of an electron positron collider:

" tune cms energy: turn on SUSY particles one-by one
" mass measurement at the kinematic threshold

= polarisation of electrons and positrons

separation of SUSY partners, e.g.: e e, >¢ ¢ eger ¢
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The Cosmological Connection

* Could SUSY particles be the Cold Dark Matter?
= Astrophysics experiments measure just densities
= |LC could close the loop

A(Q,h?/ Q,h* [%]

Il ] 1 i l
100

105

T SN PP

90 95
m, [GeV]

Joachim Mnich | Detectors at Future Colliders | ICFA Seminar Bariloche January 2010 | Page 15



The International Linear Collider

= Electron-positron collider
= centre-of-mass energy up to 1 TeV centre-of-mass energy
* Juminosities > 1034/cm?/s

= Designed in a global effort

= Accelerator technology:
supra-conducting RF cavities

= Elements of a linear collider:

pre-accelerator
few GeV

6 ping extraction

ring & dump
few GeV - (STHE final focus !,

[ Y

_ ™ bunch main linac
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International Linear Collider (ILC)

* Ecm adjustable from 200 — 500 GeV
 Luminosity |Ldt=500 fb'in 4 years

(corresponds to 2x1034 cm2s-! with a start-up profile)
* Ability to scan between 200 and 500 GeV
* Energy stability and precision below 0.1%

* Electron polarisation of at least 80%

Positron polarisation

* The machine must be upgradeable to 1 TeV!
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ILC Time Schedule

= 2006: Baseline Configuration Document
= 2007: Reference Design Report

2006 2010 2014 2018
BCD Egeg;?ges ' Construction - Startup
Begin End
RDR EDR  ~onst Const
Siting Plan being Developed Detector Detector
Construct Install
Site Site

All regions ~ 5 yrs

R &D - Industrialisation
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Challenges

: t for the highest possibl | . o
Quest fo € g, est possible Development (schematic) of gradient in
accelerator gradient SCRF cavities

" JL.C goal: 35 MV/m .

Single cell
TESLA N

= Huge progress over the last 15 years 40 - el.polish

= 25-fold improvement in perfomance/cost e .

* Major impact on next generation 30

light sources: g .
. 25 - 2
* XFEL designed for > 25 MV/m s TESLA W
10% prototype for ILC < 20
G TESLA  m
15 - 5
= Recall: LEP II used 7 MV/m
CEBAF
10
HE  Wworld Average
I
5 1 m
0 ‘ ‘ ‘
1980 1985 1990 1995 2000 2005
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FLASH: Prototype for XFEL and ILC

= 1 GeV electron LINAC based on SCRF
= used for ILC studies and as light source (free electron laser)

accelerator modules collimator undulators

FEL
experimental

4 MeV 150 MeV 450 MeV 1000 MeV area

compressor compressor
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Challenges

= Getting to 35 MV/m:

= Acceleration gradient goal:

= 35 MV/m in 9-cell cavities
with production yield >80%

= 50 MV/m have been reached
with single cavities

= Mass production reliability is the
key problem
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Cavity Quality (Q value)

= Superconducting cavity: Q1010

= A church bell (300 Hz) with
Q=5 x 10°would ring - once
excited - longer than one year!
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Challenges

* Luminostity:

n, number of bunches per pulse
N 2 f N.  number of electrons (positrons) per bunch
— Ve Trep xH f., pulserepetition frequency
4 GT(G; Hy,  disruption enhancement factor (= 2)
G,y beamdimensions atinteraction point

* make beams as small as possible at IP
6 nm x 600 nm

* and make them collide!!! oo L LTt | | /‘T’/ LI
I A
08 IR Y = 7 ,J
/ beam-beam |
2 No Feedback | feedback + :
| upstream 1
5 os! L orbit control i
% 08 - # : ' : :
® 45 | beam-beam l ML Il
. feedback : : !
' Ay | ] I
0.1 “*1"‘* 1 |
I
ol | . .’.‘b_ g :
0.1 1 I 10000 1cpooo 1000000
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Beam Beam Interactions

Simulation of two LC bunches as they meet each other

Y, Am

-0
-800 -G00 -400 -200 0 200 4010 600 200
Z, micron
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Challenges

Beamstrahlung

@ Energy loss in collision due to
Beamstrahlung:

AE  Ecy [ N \°
%8s = =
s 07 \Ox 1 0y
y ]
- . @ But: £L~1/ox0, = choose flat
y beams
- - * T @ 1.5% energy loss on average
' @ ~ 100000 ~~ pairs per BX!
| @ Intense backgrouns in the
= — | Eom ] » X forward direction, need high B iln

. i Ho
field to control et e~ pairs
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Comparison LHC and ILC

total energy 14 TeV 0.5-1 TeV
usable energy a fraction full
beam composite point-like
signal rate high low
background very high low
analysis specific modes nearly all modes
reconstruction loose along beam full event
status soon to start design to be completed
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ILC Physics Motivation

= [LC will complement LHC discoveries by precision measurements

= Here just two examples:

1) There is a Higgs, observed at the LHC
" ¢"e” experiments can detect Higgs bosons
without assumption on decay properties

Higgs-Strahlungs process (a la LEP) er

» identify Higgs events in L

e'e” — ZH from
Z, — nu decay

SM Higgs Branching Ratio

= count Higgs decay products . .y
to measure Higgs BRs :
= and hence (Yukawa)-couplings

L PRV SR SR [ N SR SR TR AN SU SR SN S AT ST SR SR S N S Y 7-::::;‘-‘ —
100 110 120 130 140 150 160

: . : : : M (GeV)
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ILC Physics Motivation

= Measure Higgs self-couplings N, L o7 7
e'e” — ZHH to establish Higgs o >wwf/ i >mf i
potential < H H i

Note: small signal above large QCD background

2) There is NO Higgs (definite answer from LHC!) )
= something else must prevent e.g. WW ¢ i

scattering from violating unitarity 7/W-

at O(1 TeV) -
= strong electroweak symmetry breaking?

— study e e« —> WWvv, Wzev and ZZee events ot ot/

" need to select and distinguish W and Z bosons
in their hadronic decays!
BR (W/Z — hadrons) = 68% / 70%

= Many other physics cases: SM, SUSY, new phenomena, ...
Need ultimate detector performance to meet the ILC physics case
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Impact on Detector Design

= Vertex detector:
e.g. distinguish c- from b-quarks
= goal impact parameter resolution
6.,~6,~5®10/(p sin @?) pm 3 times better than SLD

ro z

= small, low mass pixel detectors, various technologies under study
0(20%20 nm?)
" Tracking:
" superb momentum resolution
to select clean Higgs samples
" jdeally limited only by I',

ete—> ZH/ZZ > 11X

5=300GeV | Ldt=>500fb"
A E/E ~ 0.1%

AP{P2=5x10"

A P{/P2=20x 107

— A(1/py) =510 /GeV
(whole tracking system)
3 times better than CMS

1 L1 | | I | | B <) B | | | I I | | | I - 1 | | N | | - I‘
100 110 120 130 140 150 2160

M, (GeVic’)
Options considered:
= Large silicon trackers (a la ATLAS/CMYS)
" Time Projection Chamber with = 100 pm point resolution
o Somplemented by SiZstrip devices) sy 2010 | Page 2



Tracker Resolution

200 ¢ 200 -

180 E a=2.0x10" 180 a=8.0x10"
3 b=10x10"" a0 b=1.0x10""
e AM, =103 MeV . AM, =273 MeV
120 = h 120 h

100 B 100

Events / 500 b

&0 80
60 H 60
40 40
20 20
o C 0
100 120 140 160 100 120 140 160
Recoil Mass (GeV) Recoil Mass (GeV)

Tracker resolution matters
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Impact on Detector Design

= Calorimeter: T o D N N o PP
S~ W L% ’D-J\I;FI—J H o

distinguish W- and Z-bosons ‘____>“7”{H P ) TS , E
in their hadronic decays .
— 30%/VE jet resolution! 2 times better than ZEUS

" WW/ZZ — 4 jets:

| AR, = 0.60 VE,

o Bt TRl T T | n
-...'--..Irl
] « § « EEENH--=8 .
N RN | N SRR
e el BRI f) BN
. AN EEEEE==-
» » @ EEEENE & - = =
- ll.......l-- .
=« B -JHeEuem - =
s

 30%NE;

jet
-

T B0%NE

W12 MJLJ2

Joreim Ml TPgEticle Flow o Diidl Réadout calorimeter January 2010 | Page 31
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307 ns

Detector Challenges at the 1LC
]!

* Bunch timing:
|
=T
DT
|-

02 s

separated by 307 ns
" no trigger
= power pulsing
= readout speed
" 14 mrad crossing angle
= Background:
= small bunches
= create beamstrahlung

- 5 trains per second
- 2820 bunches per train
087 ms

backgound not as severe as at LHC
but much more relevant than at LEP

[d
— pairs
2000
| TPC
ILC-LOWP-500, 14 mrad, anti-DID +»—— 1500 | R I =] ] :
1000 - TESLA-500, 14 mrad, anti-DID ——— | L T i e Eme e py oLt

ILC-NOM-500, 14 mrad, anti-DID ———— e T e e T
o _ =

800 -

300

Joachim Mni

Hits / Layer / BX

600

400

200 -

0

_500 [

1000 =

-1500

-2000

. ;
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Two Detectors

Additional complication:

One interaction region,
but two detectors:
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Two Detectors: Push Pull

Additional complication:

One interaction region,
but two detectors:

push pull operation anticipated
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Detector Push-Pull

||
may be‘bl L detecto
accessible
during run \ A

The concept is

evolving and
details are being
worked out
Platform for electronics and
- services (~10x8x8m?). Shielded
ﬂﬂﬂ_&ﬁﬁlbl& 7 detecto detecto {~0.5m of concrete) from five
duri ng run B B sides. Moves with detector. Also
\ provide vibration isolation.

Joachim Mnich | Detectors at Future Colliders | ICFA Seminar Bariloche January 2010 | Page 35



The CLIC Two Beam Scheme

Two Beam Scheme

Drive Beam supplies RF power
* 12 GHz bunch structure

* low energy (2.4 GeV - 240 MeV)
* high current (100A)

Main beam for physics
* high energy (9 GeV - 1.5 TeV)
e current 1.2 A

CLIC*

Joachim Mnich | Detectors at Future Colliders | ICFA Seminar Bariloche

Drive beam - 100 A
from 2.4 GeV -> 240 MeV
(deceleration by
extraction of RF power)

/

POWER EXTRACTION
STRUCTURE

QUAD

ACCELERATING > 12 GHz - 68 MW

STRUCTURES

y

Main beam - 1.2 A BPM

from 9 GeV -> 1.5 TeV

No individual RF power sources
->

CLIC itself is basically
a ~50 km long klystron...
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CLIC 3 TeV Overall Leyout

Drive Beam
Generation Complex
326 klystrons BRI R 326 klystrons
33 MW, 139 us ECL D) 250 0 33 MW, 139 us
,139us | | | CR1 144.8m | I I P SV H
drive beam accelerator 2.38 GeV, 1.0 GHz = CR2 434.3m dmre beam accelerator 2.38 GeV, 1.0 GHz

|
[ i

1 km 1km .
delay Ionp -4 delay loop
@ decelerator, 24 sectors of 876 m

mmmm P ;mm;mm)

2.75 km

TA radlus— 120m & main linac, 12 GHz, 100 MV/m, 21.02 km

e* main linac TA radms— 120 m
- A -
e Main Beam
Generation Complex
CR  combiner ring ‘ booster linac, 9 GeV

TA  turnaround

DR damping ring

PDR predamping ring

BC  bunch compressor e~ injector, 2.4 GeV
BDS beam delivery system

IP interaction point

e injector, 2.4 GeV
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Comparison ILC and CLIC

Center-of-mass energy ILC 500 GeV CLIC 500 GeV CLIC 3 TeV
Total (Peak 1%) luminosity [-1034] 2(1.5) 2.3(1.4) 5.9 (2.0) —
Repetition rate (Hz) 5 50 G
Loaded accel. gradient MV/m 32 80 100
Main linac RF frequency GHz 1.3 12
Bunch charge [-10°] 20 6.8 3.7
Bunch separation (ns) 370 0.5 b
Beam pulse duration (ns) 950us 177 156 -+
Beam power/beam (MWatts) 4.9 14
Hor./vert. IP beam size (nm) 600/6 200/2.3 40/1.0
Hadronic events/crossing at IP 0.12 0.2 2.7 -
Incoherent pairs at IP 1105 1.7-105 310% S
BDS length (km) 1.87 2.75
Total site length km 31 13 48
Total power consumption MW 230 130 415

Crossing Angle 20 mrad (ILC 14 mrad)
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CLIC Time Structure

CLIC 20 me
- -
ILC L 200ms -
{4 |
trains I |1 I.l I trains W
Y bunch crossing b bunch crossing
at 337 ns at0.5 ns
bunches | ;3120 | bunches H }312'" | ..... |
~ 0.950 rm= . 156 ns

L= =]

> Bunch Spacing

= |LC: 337 ns, enough time to identify events from individual BX

= CLIC: 0.5 ns, extremely difficult to identify events from individual BX

= need short shaping time of pulses

= power cycling with 50 Hz instead 5 Hz at ILC

= larger power dissipation? does silicon tracker need to be cooled? (not cooled
in SiD)
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Why Time Stamping?

> Qverlay of physics events with background events from
several bunch crossings

= degradation of physics performance
> Main background sources from beamstrahlung

= e+e- pairs from beamstrahlung photons
low pT, can be kept inside beam pipe with high magnetic field, B >3 T

= hadrons from 2-photon collisions (beamstrahlung photons)
can have high pT, reach main tracker and confuses jet reconstruction
typically ~O(1) hadronic background event per BX with pT > 5 GeV tracks

1400 |
I — no yybackground

1200 i == yyrejection + HIggS mass
[ djusted jet d H
bl mameseel o reconstruction
-------- no yy rejection from

800 |-

HZ -> bbqq

600 -

Events / 2GeV

400 F

200

U s - ’
100 110 120 130 140 150 160 170 180
m,, [GeV] _ _
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Summary of CLIC Challenges + R&D

>

Time stamping

= most challenging in inner tracker/vertex region

= trade-off between pixel size, amount of material and timing resolution
Power pulsing and other electronics developments

= in view of CLIC time structure

Hadron calorimetry

= dense absorbers to limit radial size (e.g. tungsten)
= PFA studies at high energy

= alternative techniques, like dual/triple readout
Background

= innermost radius of first vertex detector layer

= shielding against muon background more difficult at higher E

Alignment and stability

Joachim Mnich | Detectors at Future Colliders | ICFA Seminar Bariloche January 2010 | Page 41



Main Differences CLIC as compared to ILC

> Higher energy results in more dense particle jets

= Improved double track resolution

= Calorimeters with larger thickness and higher granularity
> Much shorter bunch spacing
= CLIC0.5ns wrt.ILC 337 ns

= Requires time stamping
= Impact on pulsed power electronics

> Smaller beam sizes and higher energy

= Result in more severe background
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Time Lines

CLIC

LHC Results
ILC

Timeline

Feasibility

2005 - 2006 2007 2008 2009 2010

GLOBAL DESIGN EFFORT EE N X XXJ PROJECT

N G:sciine Configuration
I Fccrence Design
I, gimerin

ILC R&D Programme

Technical Design
International Management Repor‘f 2012
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End of Lecture 1
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