Experimental Challenges and

Techniques for Future Accelerators

 XI ICFA School on Instrumentation in Elementary Particle Physics
 San Carlos de Bariloche, Argentina 11 - 22 January 2010

> Joachim Mnich DESY

Outline

> Lecture 1

- Future particle physics at the energy frontier: case for a Linear Collider
- Linear Collider Concepts
- Experimental Challenges
- Detector Concepts

> Lecture 2

- R&D for detector components
- Vertex detector
- Tracking detectors
- Calorimeters

Elementary Particle Physics: Challenges and Visions

> Particle Physics entering Terascale

Start of the Large Hadron Collider (LHC) at CERN

> Expect answers to fundamental questions

- Origin of mass (Higgs)
- Mystery of Dark Matter
- Supersymmetry
- Extra space dimensions
- Grand Unification

Future of Particle Physics at the Energy Frontier

> LHC and its upgrades

- Luminosity
- Energy (?)

> Electron-Positron Linear Collider

- ILC (supra-conducting technology)
- CLIC (two-beam acceleration)
- Muon collider (?)

>

Here: emphasis on detector challenges for Linear Collider

Comparison Proton and Electron Colliders

- Proton (anti-) proton colliders:
 - Energy range higher (limited by magnet bending power)
 - Composite particles, different initial state constituents and energies in each collision
 - Hadronic final states difficult
- Discovery machines
- Excellent for some precision measurements

- Electron positron colliders:
 - Energy range limited (by RF power)
 - Point-like particles, exactly defined initial state quantum numbers and energies
 - Hadronic final states easy
- Precision machines
- Discovery potential
- Precision is main motivation for a new electron positron collider
- Complementarity to proton machines, e.g. SppS/Tevatron and LEP

Comparison Proton and Electron Colliders

Electron Positron Collider

The e⁺e⁻ cross section drops $\sim 1/\sqrt{s}$ 10^{6} The key parameters for a com-petitive e+e- machine are energy reach d(fb) 10^{3} luminosity Zh strive for few 10³⁴/cm²/s 120GeV 1 (comparable to LHC) 10 0 200

Recall: 10³⁴/cm²/s corresponds to 100 fb⁻¹ per year

Linear Collider Concepts

- International Linear Collider ILC
 - superconducting acceleration
 - 31.5 MeV/m, 1.3 GHz
 - advanced design (c.f. XFEL)
 - 500 GeV (→ 1TeV)
 - Luminsosity: 2 x 10³⁴ cm⁻² s⁻¹
- Compact Linear Collider CLIC
 - normalconducting acceleration
 - 100 MeV/m, 12 GHz
 - two-beam acceleration principle
 - up to several TeV
 - still in fundamental R&D phase

Summary:

- ILC ready to go ahead, but limited in energy reach (≤ 1 TeV)
- CLIC in very early state, but may pave the way for higher energy

Higgs

SM Higgs Production at the ILC

Dominant production mechanisms: Higgsstrahlung and WW-fusion

Higgs

Higgs Couplings

- Measuring the couplings of the Higgs to massive particle
- Check coupling-mass relation
 - The smoking gun!

Verification of the Higgs Potential

Giga-Z

- Production of 10⁹ Z-Bosonen at $\sqrt{s} = 91$ GeV
 - 100-fold LEP I statistics
 - polarisation (as SLC)
 - 30 fb⁻¹ = 1/2 year

Comparison today's SM-Fits with Giga-Z:

LEP/SLC/Tevatron	Giga-Z
91 187,5 ± 2,1 MeV	
$0,23153 \pm 0,00016$	± 0,000013
0,899 ± 0,013	± 0,001
$0,21629 \pm 0,00066$	± 0,00014
80 392 ± 29 MeV	± 6 MeV
	LEP/SLC/Tevatron 91 187,5 ± 2,1 MeV 0,23153 ± 0,00016 0,899 ± 0,013 0,21629 ± 0,00066 80 392 ± 29 MeV

• If $m_{SUSY} < 2$ TeV \Rightarrow Discovery at the LHC

SUSY will be the New Standard Model

Scalar partners of fermions

 $\widetilde{\mathbf{e}}_{R}, \widetilde{\mathbf{e}}_{L}, \widetilde{\boldsymbol{\mu}}_{R}, \widetilde{\boldsymbol{\mu}}_{L}, \dots, \widetilde{\mathbf{t}}_{1}, \widetilde{\mathbf{t}}_{2}$

- Fermionic partners of bosons
 - $\widetilde{\chi}^{\pm}, \widetilde{\chi}_{1}^{0}, \cdots, \widetilde{\chi}_{4}^{0}, \widetilde{\mathrm{g}}$
 - \geq 2 Higgs-doublets h, H, A, H[±]

Advantages of an electron positron collider:

- tune cms energy: turn on SUSY particles one-by one
- mass measurement at the kinematic threshold
- polarisation of electrons and positrons separation of SUSY partners, e.g.:

Joachim Mnich | Detectors at Future Colliders | ICFA Seminar Bariloche

$$e_L^+ e_L^- \to \widetilde{e}_L^+ \widetilde{e}_L^-$$

 $e_R^+ e_R^- \xrightarrow{} \widetilde{e}_R^+ \widetilde{e}_R^-$ January 2010 | Page 14

The Cosmological Connection

- Could SUSY particles be the Cold Dark Matter?
- Astrophysics experiments measure just densities
- ILC could close the loop

The International Linear Collider

- Electron-positron collider
 - centre-of-mass energy up to 1 TeV centre-of-mass energy
 - Iuminosities > 10³⁴/cm²/s
- Designed in a global effort
- Accelerator technology: supra-conducting RF cavities
- Elements of a linear collider:

International Linear Collider (ILC)

- E_{cm} adjustable from 200 500 GeV
- Luminosity ∫Ldt = 500 fb⁻¹ in 4 years (corresponds to 2×10³⁴ cm⁻²s⁻¹ with a start-up profile)
- Ability to scan between 200 and 500 GeV
- Energy stability and precision below 0.1%
- Electron polarisation of at least 80%
 Positron polarisation
- The machine must be upgradeable to 1 TeV!

ILC Time Schedule

- 2006: Baseline Configuration Document
- 2007: Reference Design Report

Challenges

- Quest for the highest possible accelerator gradient
 U.C. seek 25 MW/m
- ILC goal: 35 MV/m
- Huge progress over the last 15 years
- 25-fold improvement in perfomance/cost
- Major impact on next generation light sources:
 - XFEL designed for ≥ 25 MV/m 10% prototype for ILC
- Recall: LEP II used 7 MV/m

FLASH: Prototype for XFEL and ILC

- 1 GeV electron LINAC based on SCRF
- used for ILC studies and as light source (free electron laser)

Joachim Mnich | Detectors at Future Colliders | ICFA Seminar Bariloche

Challenges

- Getting to 35 MV/m:
 - Acceleration gradient goal:
 - 35 MV/m in 9-cell cavities with production yield >80%
 - 50 MV/m have been reached with single cavities
 - Mass production reliability is the key problem

Cavity Quality (Q value)

Superconducting cavity: Q>10¹⁰

 A church bell (300 Hz) with Q=5 x 10¹⁰ would ring - once excited - longer than one year!

Challenges

Luminostity:

$$L = \frac{n_{\rm b} N_{\rm e}^2 f_{\rm rep}}{4\pi \,\sigma_x^* \sigma_y^*} \times H_D$$

- $n_{\rm b}$ number of bunches per pulse
- $N_{\rm e}$ number of electrons (positrons) per bunch
- $f_{\rm rep}$ pulse repetition frequency
- H_D disruption enhancement factor (≈ 2)
- $\sigma^*_{x(y)}$ beam dimensions at interaction point

make beams as small as possible at IP 6 nm × 600 nm

Beam Beam Interactions

Simulation of two LC bunches as they meet each other

Andrei Sergey, SL2AC

Challenges

Beamstrahlung

 Energy loss in collision due to Beamstrahlung:

$$\delta_{BS} = \frac{\Delta E}{E} = \frac{E_{CM}}{\sigma_Z} \left(\frac{N}{\sigma_X + \sigma_y}\right)^2$$

- But: $\mathcal{L} \sim 1/\sigma_x \sigma_y \Rightarrow$ choose flat beams
- 1.5 % energy loss on average
- \approx 100 000 $\gamma\gamma$ pairs per BX!
- Intense backgrouns in the forward direction, need high B if field to control e⁺e⁻ pairs =

	LHC	ILC
total energy	14 TeV	0.5-1 TeV
usable energy	a fraction	full
beam	composite	point-like
signal rate	high	low
background	very high	low
analysis	specific modes	nearly all modes
reconstruction	loose along beam	full event
status	soon to start	design to be completed

ILC Physics Motivation

- ILC will complement LHC discoveries by precision measurements
- Here just two examples:
- 1) There is a Higgs, observed at the LHC
 - e⁺e⁻ experiments can detect Higgs bosons without assumption on decay properties Higgs-Strahlungs process (à la LEP)
 - identify Higgs events in e⁺e[−] → ZH from Z → µµ decay
 - count Higgs decay products to measure Higgs BRs
 - and hence (Yukawa)-couplings

M_н(GeV)

ILC Physics Motivation

 Measure Higgs self-couplings e⁺e⁻ → ZHH to establish Higgs potential

Note: small signal above large QCD background

- 2) There is NO Higgs (definite answer from LHC!)
 - something else must prevent e.g. WW scattering from violating unitarity at O(1 TeV)
 - strong electroweak symmetry breaking?
 - \rightarrow study e⁺ e⁻ \rightarrow WWvv, Wzev and ZZee events
 - need to select and distinguish W and Z bosons in their hadronic decays!
 BR (W/Z → hadrons) = 68% / 70%
- Many other physics cases: SM, SUSY, new phenomena, ...
 Need ultimate detector performance to meet the ILC physics case

 e^{-}/ν

Impact on Detector Design

- Vertex detector:
 - e.g. distinguish c- from b-quarks
 - goal impact parameter resolution
 - $\sigma_{r\phi} \approx \sigma_z \approx 5 \oplus 10/(p \sin \Theta^{3/2}) \ \mu m$ 3 times better than SLD
 - small, low mass pixel detectors, various technologies under study O(20×20 μm²)
- Tracking:
 - superb momentum resolution to select clean Higgs samples
 - ideally limited only by Γ_Z
 - $\rightarrow \Delta(1/p_T) = 5 \cdot 10^{-5} / \text{GeV}$ (whole tracking system) 3 times better than CMS

$e^+e^- \rightarrow ZH/ZZ \rightarrow l\bar{l} X$ Events/0.5GeV/c 900 √s=300GeV $\int L dt = 500 \, fb^{-1}$ $\Delta E/E \sim 0.1\%$ 800 700 $\Delta P_T/P_T^2 = 5 \times 10^{-5}$ 600 $\Delta P_{T}/P_{T}^{2} = 20 \times 10^{-5}$ 500 400 300 200 100

90

100

Options considered:

- Large silicon trackers (à la ATLAS/CMS)
- Time Projection Chamber with $\approx 100 \ \mu m$ point resolution

(complemented by Si–strip devices) Joachim Mnich | Detectors at Future Colliders | ICFA Seminar Bariloche 0 150 M⊔(GeV/c

Tracker Resolution

Tracker resolution matters

Impact on Detector Design

Calorimeter:

 e^+ Z_{H} H Z_{H} H Z_{H}

distinguish W- and Z-bosons in their hadronic decays → 30%/√E jet resolution! 2 ti

- 2 times better than ZEUS
- WW/ZZ \rightarrow 4 jets:

Joachim Mnich Particle Flow or Dual Readout calorimeter

January 2010 | Page 31

Detector Challenges at the ILC

- Bunch timing:
 - 5 trains per second
 - 2820 bunches per train separated by 307 ns
 - no trigger
 - power pulsing
 - readout speed
- 14 mrad crossing angle
- Background:
 - small bunches
 - create beamstrahlung
 → pairs

backgound not as severe as at LHC but much more relevant than at LEP

Additional complication:

One interaction region, but two detectors:

Additional complication:

One interaction region, but two detectors:

push pull operation anticipated

Detector Push-Pull

The CLIC Two Beam Scheme

Drive beam - 100 A

from 2.4 GeV -> 240 MeV (deceleration by

CLIC 3 TeV Overall Leyout

Comparison ILC and CLIC

Center-of-mass energy	ILC 500 GeV	CLIC 500 GeV	CLIC 3 TeV	
Total (Peak 1%) luminosity [·10 ³⁴]	2(1.5)	2.3 (1.4)	5.9 (2.0)	
Repetition rate (Hz)	5	50		←
Loaded accel. gradient MV/m	32	80	100	
Main linac RF frequency GHz	1.3	12		
Bunch charge [·10 ⁹]	20	6.8	3.7	
Bunch separation (ns)	370	0.5		
Beam pulse duration (ns)	950μs	177	156	
Beam power/beam (MWatts)		4.9	14	
Hor./vert. IP beam size (nm)	600 / 6	200 / 2.3	40 / 1.0	
Hadronic events/crossing at IP	0.12	0.2	2.7	
Incoherent pairs at IP	1 ·10⁵	1.7·10 ⁵	3·10⁵	
BDS length (km)		1.87	2.75	
Total site length km	31	13	48	
Total power consumption MW	230	130	415	

Crossing Angle 20 mrad (ILC 14 mrad)

CLIC Time Structure

> Bunch Spacing

- ILC: 337 ns, enough time to identify events from individual BX
- CLIC: 0.5 ns, extremely difficult to identify events from individual BX
- need short shaping time of pulses
- power cycling with 50 Hz instead 5 Hz at ILC
- larger power dissipation? does silicon tracker need to be cooled? (not cooled in SiD)

Why Time Stamping?

- > Overlay of physics events with background events from several bunch crossings
 - degradation of physics performance
- Main background sources from beamstrahlung
 - e+e- pairs from beamstrahlung photons low pT, can be kept inside beam pipe with high magnetic field, B > 3 T
 - hadrons from 2-photon collisions (beamstrahlung photons) can have high pT, reach main tracker and confuses jet reconstruction typically ~O(1) hadronic background event per BX with pT > 5 GeV tracks

> Time stamping

- most challenging in inner tracker/vertex region
- trade-off between pixel size, amount of material and timing resolution
- > Power pulsing and other electronics developments
 - in view of CLIC time structure

> Hadron calorimetry

- dense absorbers to limit radial size (e.g. tungsten)
- PFA studies at high energy
- alternative techniques, like dual/triple readout

> Background

- innermost radius of first vertex detector layer
- shielding against muon background more difficult at higher E
- > Alignment and stability

Main Differences CLIC as compared to ILC

> Higher energy results in more dense particle jets

- Improved double track resolution
- Calorimeters with larger thickness and higher granularity
- > Much shorter bunch spacing
 - CLIC 0.5 ns wrt. ILC 337 ns
 - Requires time stamping
 - Impact on pulsed power electronics
- Smaller beam sizes and higher energy
 - Result in more severe background

End of Lecture 1