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In unbroken SU(5) Grand Unified Theories (GUTs) we expect

gGUT = gs = g =
√

5/3 g′ (1)

and

sin2 θW =
g′2

g2 + g′2
=

3/5 g2
GUT

g2
GUT + 3/5 g2

GUT

=
3

8
. (2)

However, these parameters are not observed in low-energy experiments. Fur-
thermore, we do not observe interactions through the 12 additional gauge
bosons of SU(5). Thus the GUT symmetry must be broken at a high scale
MGUT . In that case, the gauge couplings of the three Standard Model groups
evolve independently below the GUT scale due to the renormalization of di-
vergent radiative corrections to the gauge vertices.

1 Evolution of Gauge Couplings

The evolution of the gauge couplings gi (g3 = gs, g2 = g, g1 =
√

5/3 g′) is
described by the beta function:

βi ≡
dgi

d ln(µ/µ0)
= µ

dgi

dµ
=

1

16π2
big

3
i + O(g5

i ), (3)

where the constants bi are determined from the one-loop corrections to the
gauge vertices. The beta function can also be rewritten in terms of αi =
g2

i /4π

µ
dαi

dµ
= µ

d(g2
i /4π)

dµ
= µ

gi

2π

dgi

dµ
=

1

2π
biα

2
i + O(α3

i ), (4)

The first order beta function for the inverse gauge couplings becomes very
simple,

µ
dα−1

i

dµ
= − 1

α2
i

· µ dαi

dµ
= − 1

2π
bi , (5)
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and can easily be integrated using separation of variables:

µ
∫

M

dα−1
i (µ′) = − 1

2π
bi

µ
∫

M

dµ′

µ′
(6)

leading to to the evolution equation

α−1
i (µ) = α−1

i (M) − 1

2π
bi ln(µ/M). (7)

Under the assumption that there are no new particles (except for SM
singlets) between the electroweak (or SUSY mass) scale and the GUT scale,
MGUT and the unified gauge coupling αGUT can be determined from the
intersection of two gauge couplings according to equation (1):

α−1
GUT = α−1

i (mZ) − bi
2π

ln(MGUT/mZ) = α−1
j (mZ) − bj

2π
ln(MGUT/mZ)

(8)

MGUT = mZ exp

(

2π

bi − bj

(

α−1
i (mZ) − α−1

j (mZ)
)

)

(9)

In order to solve these equations we need the measured input parameters at
the electroweak scale:

α−1
em(mZ) ' 128 ,

sin2 θW (mZ) ' 0.231 ,

αs(mZ) ' 0.118 ,

mZ ' 91.2 GeV.

(10)

From these we can determine α1 and α2 at the electroweak scale:

α−1
1 (mZ) =

3

5

cos2 θW (mZ)

αem(mZ)
= 59.1 ,

α−1
2 (mZ) =

sin2 θW (mZ)

αem(mZ)
= 29.6 .

(11)

In addition we need to know the constants bi for SU(3)c, SU(2)L and U(1)Y .
These depend on the particle content of the theory.

1.1 Standard Model

In the Standard Model the constants in the one-loop beta functions are given
by

bi =
2

3
T (Ri)d(Rj)d(Rk) +

1

3
T (Si)d(Sj)d(Sk) −

11

3
C2(Gi). (12)
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The fermion multiplets transform according to the representation Ri with
respect to Gi and the bosons according to Si. T (R) is the normalization of
the generators T a in the representation R:

Tr
[

T aT b
]

= T (R)δab. (13)

The generators of the fundamental representation of SU(N) are usually nor-
malized to T (R) = 1/2. d(R) is the dimension of the representation R and
C2(R) is the quadratic Casimir operator for the representation R:

T a
ikT

a
kj = C2(R)δij. (14)

It is easy to see that T (R) and C2(R) are related by the identity

C2(R)d(R) = T (R)d(G), (15)

where d(G) is the dimension of the adjoint representation (i.e. the number
of generators of the group). For the adjoint representation of SU(N) we have

T (G) = C2(G) = N. (16)

For a representation of U(1) one has C2(G) = 0 and T (R) = Y 2, where Y is
the appropriately normalized hypercharge.

For SU(3) we only have contributions from the SU(3) quark triplets

b3 =
2

3
· 1

2
(2 · 1 + 1 · 1 + 1 · 1)NG − 11

3
· 3 =

4

3
NG − 11. (17)

In the SU(2) case we have contributions from one SU(2) quark doublet, one
SU(2) lepton doublet and SU(2) Higgs doublets

b2 =
2

3
· 1

2
(3 · 1 + 1 · 1)NG +

1

3
· 1

2
(1 · 1)NH − 11

3
· 2

=
4

3
NG +

1

6
NH − 22

3
(18)

and in the U(1) case we have contributions from all particles according to
their hypercharge (with a normalization factor of 3/5)

b1 =
2

3
· 3

5

[

(

1

6

)2

· 2 · 3 +

(

−2

3

)2

· 1 · 3 +

(

1

3

)2

· 1 · 3 +

(

−1

2

)2

· 2 · 1

+ 12 · 1 · 1
]

NG +
1

3
· 3

5

[

(

−1

2

)2

· 2 · 1
]

NH (19)

=
4

3
NG +

1

10
NH .
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Name Scalars φi Fermions χi
L (SU(3)c, SU(2)L)Y

Sleptons, leptons L̃i =

(

ν̃i
L

ẽ− i
L

)

Li =

(

νi
L

e− i
L

)

(1, 2)− 1
2

Ẽ∗ i = ẽ−∗ i
R Ec i = e− c i

R (1, 1)+1

Squarks, quarks Q̃i
h =

(

ũi
L, h

d̃i
L, h

)

Qi
h =

(

ui
L, h

di
L, h

)

(3, 2)+ 1
6

Ũ∗ i
h = ũ∗ i

R, h U c i
h = uc i

R, h (3̄, 1)− 2
3

D̃∗ i
h = d̃∗ i

R, h Dc i
h = dc i

R, h (3̄, 1)+ 1
3

Higgs, higgsinos Hd =

(

H0
d

H−
d

)

H̃d =

(

H̃0
d

H̃−
d

)

(1, 2)− 1
2

Hu =

(

H+
u

H0
u

)

H̃u =

(

H̃+
u

H̃0
u

)

(1, 2)+ 1
2

Table 1: Chiral supermultiplets of the MSSM.

We can summarize these results and insert the number of fermion gener-
ations NG = 3 and Higgs doublets NH = 1:





b1
b2
b3



 = NG





4
3
4
3
4
3



+NH





1
10
1
6

0



−





0
22
3

11



 =





41
10

−19
6

−7



 . (20)

Using these parameters the gauge couplings do not unify at the high scale.
The three intersection points range from MGUT ' 1013 GeV to MGUT '
1017 GeV and correspond to a unified coupling in the range α−1

GUT ' 40 to
α−1

GUT ' 47.
Thus new physics beyond the Standard Model is needed to make GUTs

viable. One possibility is to introduce additional particles in the SM. For
instance six Higgs doublets at O(mZ) lead to a unification of gauge couplings
atMGUT ' 4×1013 GeV. Another possibility is to change the particle content
due to the introduction of supersymmetry.

1.2 Minimal Supersymmetric Standard Model

In the supersymmetric case there is a scalar partner for each fermion that
transforms according to the same representations with respect to the gauge
groups. Thus the contributions of fermions and bosons to bi can be combined
in one term. The fermionic partners of the gauge bosons, the gauginos, also
transform according to the adjoint representation and therefore alter the
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Name Gauge bosons Gauginos (SU(3)c, SU(2)L)Y

B boson, bino A
(1)
µ = Bµ λ(1) = B̃ (1, 1)0

W bosons, winos A
(2) a
µ = W a

µ λ(2) a = W̃ a (1, 3)0

gluons, gluinos A
(3) a
µ = Ga

µ λ(3) a = g̃a (8, 1)0

Table 2: Gauge supermultiplets of the MSSM.

coefficient of the C2(Gi) term. One obtains:

bi = T (Ri)d(Rj)d(Rk) − 3C2(Gi). (21)

Inserting the particle content of the MSSM one has

b3 =
1

2
(2 · 1 + 1 · 1 + 1 · 1)NG − 3 · 3 = 2NG − 9, (22)

b2 =
1

2
(3 · 1 + 1 · 1)NG +

1

2
(1 · 1 + 1 · 1)N2H − 3 · 2

= 2NG +N2H − 6 (23)

and

b1 =
3

5

[

(

1

6

)2

· 2 · 3 +

(

−2

3

)2

· 1 · 3 +

(

1

3

)2

· 1 · 3 +

(

−1

2

)2

· 2 · 1

+ 12 · 1 · 1
]

NG +
3

5

[

(

−1

2

)2

· 2 · 1 +

(

1

2

)2

· 2 · 1
]

N2H (24)

= 2NG +
3

5
N2H .

Inserting the number of fermion generations NG = 3 and the number of
pairs of Higgs doublets N2H = 1 the results can be summarized as:





b1
b2
b3



 = NG





2
2
2



+N2H





3
5

1
0



−





0
6
9



 =





33
5

1
−3



 (25)

With these altered coefficients the one-loop calculation results in a unification
of gauge couplings at MGUT ' 2×1016 GeV, corresponding to a unified gauge
coupling α−1

GUT ' 24.
In fact, using the precision input parameters from LEP, one has to con-

sider the two-loop beta function for the evolution of the gauge couplings
including also one-loop threshold effects due to particle masses (at the elec-
troweak scale and also at the GUT scale).
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Figure 1: Renormalization group evolution of the inverse gauge couplings
in the Standard Model (dashed) and the MSSM (solid) including two-loop
effects. The sparticle mass thresholds are varied between 250 GeV and 1 TeV.
Figure taken from [4].

2 Higgs Sector of Minimal SU(5) SUSY GUT

In order to break the SU(5) GUT group down to SU(3)c×SU(2)L×U(1)Y

one introduces a new Higgs multiplet Σ in the adjoint representation (24) of
SU(5). To maintain the electroweak symmetry breaking to SU(3)c×U(1)em

and to generate masses for the fermions two additional Higgs multiplets H
(5) and H̄ (5̄) that contain the usual SU(2)-doublet Higgs multiplets as well
as color-triplet partners of these have to be included.

The superpotential of the minimal SUSY SU(5) model is given by

W =
1

2
fV Tr Σ2 +

1

3
f Tr Σ3 + λH̄α

(

Σα
β + 3V δα

β

)

Hβ

+
√

2Y ij
d ψ

αβ
i φjαH̄β +

1

4
Y ij

u εαβγδεψ
αβ
i ψγδ

j H
ε,

(26)

where i, j = 1, 2, 3 are generation indices and Greek indices are SU(5) indices.
The chiral superfields ψ (10) and φ (5̄) are left-handed matter supermulti-
plets. The adjoint Higgs multiplet is given by

Σ = ΣaT a =

(

Σ(8,1) Σ(3,2)

Σ(3̄,2) Σ(1,3)

)

+
1

2
√

15

(

2 · 13×3 0
0 −3 · 12×2

)

Σ(1,1) . (27)
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We neglect the Yukawa part for this discussion and rewrite the superpo-
tential as

W =
1

2
fV ΣaΣb TrT aT b +

1

3
fΣaΣbΣc TrT aT bT c. (28)

Now we can substitute TrT aT b = 1/2 δab and

TrT aT bT c = Tr
1

2
T a
([

T b, T c
]

+
{

T b, T c
})

= Tr
1

2
T a
(

f bcdT d + dbcdT d
)

=
1

4

(

fabc + dabc
)

(29)

with fabc = 2 TrT a
[

T b, T c
]

and dabc = 2 TrT a
{

T b, T c
}

. The superpotential
becomes

W =
1

4
fV (Σa)2 +

1

12
fdabcΣaΣbΣc. (30)

The conditions for a SUSY conserving minimum of the superpotential are

∂W

∂Σa
= 0,

∂W

∂H
= 0,

∂W

∂H̄
= 0 (31)

and they are at the same time approximate conditions for the minimum of
the scalar potential. We find

∂W

∂Σa
=

1

2
fV Σa +

1

4
fdabcΣbΣc = 0 (32)

and see that 〈Σa〉 = 0 is a solution that does not break SU(5). Therefore we
choose a VEV for Σ(1,1) and use

d12 12 12 = 4 TrT 12T 12T 12 = 4
3 · 23 − 2 · 33

23
√

15
3 =

1√
15

(33)

giving the condition

1

2
f
〈

Σ(1,1)

〉

(

V − 1

2
√

15

〈

Σ(1,1)

〉

)

= 0 (34)

that is solved by
〈

Σ(1,1)

〉

= 2
√

15V , so that

〈Σ〉 =
〈

Σ(1,1)

〉

T 12 = V













2
2

2
−3

−3













. (35)
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This VEV breaks SU(5) to SU(3)× SU(2)×U(1). In a similar way one can
find a VEV that breaks SU(5) to SU(4)×U(1):

〈Σ〉 = V













1
1

1
1

−4













. (36)

These three minima are degenerate and the minimal SU(5) SUSY GUT does
not explain why the breaking to SU(3)× SU(2)×U(1) should be chosen.

Now we want to check the other two conditions in equation (31):

∂W

∂H
= λH̄ (Σ + 3V · 1) = 0 ,

∂W

∂H̄
= λ (Σ + 3V · 1)H = 0 .

(37)

These conditions require that the color-triplet components do not acquire a
VEV. On the other hand, a VEV for the SU(2)-doublet Higgs bosons does
not destroy the picture and allows for electroweak symmetry breaking at low
energy. Inserting the VEV into the superpotential we see that it is fine-tuned
such that the SU(2) Higgs doublets are massless while the color-triplet Higgs
bosons obtain a mass parameter

MHc
= MH̄c

= 5λV. (38)

The Higgs VEV 〈Σ〉 generates masses for the SU(5) gauge bosons X and
Y . This can be seen from the kinetic Lagrangian of the 24 Higgs bosons:

L ⊃ Tr(DµΣ)†(DµΣ) (39)

with the covariant derivative of the adjoint Higgs matrix

DµΣ = ∂µΣ + igGUT [Aµ, Σ] . (40)

The mass terms for the gauge bosons are then given by

g2
GUT Tr [Aµ, 〈Σ〉]2 . (41)

The Standard Model gauge bosons commute with 〈Σ〉 and therefore remain
massless. The masses for the X and Y bosons become

g2
GUTV

2 Tr

























X1 Y1

X2 Y2

X3 Y3

X1 X2 X3

Y1 Y2 Y3













,













2
2

2
−3

−3

























2

= −50 g2
GUTV

2
(

X2
1 +X2

2 +X2
3 + Y 2

1 + Y 2
2 + Y 2

3

)

(42)
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⇒ MX = MY = 5
√

2 gGUTV . (43)

We will call this mass the GUT scale and from α−1
GUT ' 24 we find gGUT ' 0.7

and therefore V ' 4 × 1015 GeV.
In addition one can find the masses for the 24 Higgs bosons from the first

two terms in the superpotential. The results are:

MΣ(8,1)
= MΣ(1,3)

=
5

2
fV, (44)

MΣ(3,2)
= MΣ(3̄,2)

= 5
√

2 gGUTV , (45)

MΣ(1,1)
=

1

2
fV. (46)

Open Questions In the minimal SU(5) SUSY GUT model the mass of
the 5 and 5̄ Higgs bosons has to be fine-tuned such that the SU(2) doublet
Higgs bosons have vanishing mass and the color-triplet Higgs bosons have
masses of O(MGUT ) in order to suppress proton decay. This is known as the
doublet-triplet splitting problem.

There are several models in the literature to obtain massless Higgs dou-
blets without explicit fine-tuning of the parameters in the model:

• In the sliding singlet model one introduces a singlet superfield Z and
adds a term λH̄ZH to the superpotential. This would alter equation
(37) to

λ (Σ + Z)H +MH = 0 (47)

and for a nonvanishing VEV of the Higgs doublet the new singlet ac-
quires a VEV such that −3V λ+ λ 〈Z〉 +M = 0.

• The missing doublet model uses a superpotential without a mass term
MH̄H and gives masses to the color-triplet Higgs bosons through mix-
ing with particles in another representation. To achieve this one has
to use larger representations of SU(5): Instead of the 24 one uses a 75
and one introduces the additional 50 and 5̄0. The Higgs doublet has
no partner in 50 and therefore remains massless.

Apart from the problem to generate the doublet-triplet splitting it is not
clear that the color-triplet Higgs bosons are heavier than the GUT scale: In
a perturbative theory the dimensionless couplings have to be small. Thus we
have λ . 1 and the mass of the color-triplet Higgs bosons becomes

MHc
= MH̄c

= 5λV . MGUT . (48)

Thus the Higgs triplet mass might be too low to suppress rapid proton decay.
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