problem 1:

$$
\left.\left.\begin{array}{rl}
x r & =L\left(\begin{array}{c}
\sin \theta \\
\sin \varphi \\
\sin \varphi \\
\cos \theta
\end{array}\right) \\
d x_{1} & =L(\cos \theta \sin \varphi d \varphi+\sin \theta \cos \varphi d \varphi
\end{array}\right) \quad \begin{array}{rl}
d x_{2} & =L(\cos \theta \cos \varphi d \varphi-\sin \theta \sin \varphi d \varphi
\end{array}\right)
$$

problem 2:

$$
\begin{aligned}
& \frac{\partial x^{r}}{\partial y^{2}}=\left(\begin{array}{c}
1 \\
0 \\
\partial f \partial x
\end{array}\right) \quad \frac{d x^{d}}{\partial y^{2}}=\left(\begin{array}{c}
0 \\
1 \\
\partial f / \partial y
\end{array}\right) \\
& \gamma_{c b}=\left(\begin{array}{c}
1+\left(\frac{\partial f}{\partial x}\right)^{2} \\
1+\frac{\partial f}{\partial x} \frac{\partial f}{\partial f} \\
1+\frac{\partial}{\partial x} \partial f \\
\partial f
\end{array}\right) \\
& u_{\psi}=\epsilon_{\Gamma \sim \lambda} \frac{\partial x^{v}}{\partial y^{a}} \frac{\partial x^{\lambda}}{\partial y^{6}} \epsilon^{a b} \frac{1}{2 \sqrt{\operatorname{det} \gamma}} \\
& =\epsilon_{\mu u \lambda} \frac{\partial x^{2}}{\partial y^{1}} \frac{\partial x^{\lambda}}{\partial y^{2}} \cdot \frac{1}{\sqrt{\operatorname{det}^{t} \gamma}} \\
& =\left(\frac{\partial x^{l}}{\partial y^{2}}\right) \times\left(\frac{\partial x^{\lambda}}{\partial y^{2}}\right) \cdot \frac{1}{\sqrt{\operatorname{det} \gamma}} \\
& =\left(\begin{array}{c}
-3 f \partial x \\
-\partial f \partial y \\
1
\end{array}\right) \frac{1}{\sqrt{\text { det }}} \\
& \operatorname{det} j=\Lambda r\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2} \\
& \text { () } \quad n_{\mu} n \mu=1
\end{aligned}
$$

$$
\begin{aligned}
M_{a b} & =\eta_{r} \frac{\partial_{x}^{2} \mu}{\partial y^{a} \partial y^{b}} \\
& =\frac{\partial^{2} f}{y^{-1} g^{b}} \frac{1}{\sqrt{\operatorname{det} \gamma}} \\
-\frac{R}{2} & =\frac{\operatorname{det} 1}{\operatorname{det} \gamma}=\frac{\delta^{2} x f y y-f_{x y}^{2}}{\left(1+\left(\partial f(x)^{2}+(\partial f y)^{2}\right)^{2}\right.} \\
& =k
\end{aligned}
$$

problem 3:

$$
-\frac{R}{2}=\frac{\operatorname{det} M}{\operatorname{det}}=K
$$

4
invariant under coord. trafos in 2-space

$$
\begin{aligned}
& \text { Mab } \\
& \gamma_{a b} \\
& y \rightarrow y^{\prime} \\
& \gamma_{a b}^{\prime}=\partial^{c} y^{c} \frac{\partial y^{d}}{}{ }^{d} f_{c d} \\
& \operatorname{det} \gamma_{2 b^{\prime}}=\operatorname{det} \gamma \cdot(\operatorname{det} 2 y,)^{2} \\
& \text { Me } M_{2 b}^{\prime} \stackrel{!}{=} \operatorname{det} M\left(\operatorname{ect} \frac{\partial y}{\partial y},\right)^{2}
\end{aligned}
$$

This would be true if $M_{a b}$ was a tensor!

$$
\begin{aligned}
& M_{2 b}=\frac{\partial^{2} x^{r}}{\partial y^{2} y^{s}} 4 \mu \\
& \frac{\partial x^{r}}{\partial y^{a}} \xrightarrow{y \rightarrow y^{\prime}} \quad \frac{d y^{1 b}}{d y^{a}} \frac{\partial x^{r}}{\partial y^{\prime b}}
\end{aligned}
$$

It's a covariant vector w.r.t 2-space

$$
\frac{\partial x^{\mu}}{\partial y^{a}} \xrightarrow{x \rightarrow x^{\prime}} \quad \frac{\partial x^{\mu}}{\partial x^{\prime}} \frac{\partial x^{\prime}}{\partial y^{a}}
$$

It's a contravariant vector w.r.t. 3-space

$$
\frac{\partial x^{\mu}}{\partial y^{a}}=T_{a}^{\mu}
$$

In order to get a tensor, we would have to use the covariant derivative w.r.t 2-space:

$$
\nabla_{b} \frac{\partial x \varphi}{\partial y^{a}}
$$

$$
\begin{aligned}
D_{b} \frac{\partial x^{\beta}}{\partial y^{6}} & =\frac{\partial^{2} x^{h}}{\partial y^{2} \partial y^{6}}-\Gamma_{a b}^{c} \frac{\partial x^{A}}{\partial y^{c}} \\
T_{c b}^{c} & =\gamma^{c d} \frac{\partial x^{\alpha}}{\partial y^{d}} \frac{\partial x \beta}{\partial y^{2} \partial y^{b} q \alpha \beta}
\end{aligned}
$$

$$
\begin{aligned}
& \text { () } D_{b} \frac{\partial y^{\mu}}{\partial y^{a}}=\left(\delta_{l}^{\mu}-p_{l}^{\mu}\right) \frac{\partial x^{2}}{\partial y^{a} \partial y^{6}} \\
& G \nabla_{s} \frac{\partial \dot{\partial} \mu}{\partial y^{a}} n_{\mu}=\frac{\partial_{k}^{2} \mu}{\partial y^{2} \partial y^{6}} \eta_{\mu} \geqslant M_{2 b}
\end{aligned}
$$

So $M_{a b}$ is indeed a tensor!

