solutions - exercises 2:
problem 1:
We can go to a frame where
$$U^{t} = \begin{pmatrix} t \\ y \end{pmatrix}$$

 $U^{t}U_{p} = V^{t}V_{p} = -1$
In this frame V^{t} will be of the form
 $V^{t} = t_{t} \begin{pmatrix} t \\ y \end{pmatrix}$
 $\Rightarrow U^{t}V_{p} = -t_{t} = -\sqrt{1-t^{2}}t_{t}$
 $\Rightarrow U^{t}V_{p} = -t_{t} = -\sqrt{1-t^{2}}t_{t}$
 $\Rightarrow I^{t}V_{p} = -t_{t} = -\sqrt{1-t^{2}}t_{t}$
 $= -\sqrt{1-t$

 $\Lambda_{+}^{t}(q)\Lambda_{v}^{k}(q) = \Lambda_{v}^{t}(q_{1}+q_{1})$ problem 3: One can write the rotation as $\mathcal{N}_{v^2} \begin{pmatrix} \mathcal{A} \\ \mathcal{R}_{i_1} \end{pmatrix}' v$ And the boost along x as $\Lambda^{X} = \begin{pmatrix} c - s \\ -s \\ c \end{pmatrix}$ In order to generate a general boost, one can rotate + boost + rotate back $\binom{1}{R} \binom{1}{\Lambda^{\mathsf{x}}} \binom{1}{\Lambda^{\mathsf{x}}} \binom{1}{R^{\mathsf{T}}}$ The genral boost is given by $\Delta = \begin{pmatrix} \delta & -\delta v_i \\ -\delta v_i & \delta i_1 + (\gamma^{-1}) \frac{v_i v_1}{v_i} \end{pmatrix}$ $\begin{pmatrix} & & \\ & & \\ \\ & & \\ \\ & = \begin{pmatrix} & & & \\ &$

The final result is that rotation+boost+rotation back is equivalent to a boost with a rotated velocity.

problem 4:

The proof follows the same proof for the energy momentum tensor in the lecture.

2"= Ign S(x-xn) at $\partial_i j' = \sum q_n \partial_i \delta(x - x_n) \frac{dx_n'}{2t}$ = $\sum q_{u} \left(\frac{\partial}{\partial x_{u}} \right) = \delta(x - x_{u}) \frac{dx_{u}}{dt}$ $= [9_{n}(-2_{r}) \delta(x-x_{n})$ = - 220 => 22/1-0

problem 5:

 $\partial_{\mu} \langle \Gamma = 0 = 0 \rangle$ 0 = (2x 2x) = (2x (2x)) + S d'x F

boundary term = 0 (by assumption)

-) $o = \partial_E \int dx \gamma^o = \partial_E Q$ problem 6: $\partial_{\mu}T^{\mu\nu} = (\partial_{\mu}F^{\mu})F^{\nu\alpha} + F^{\mu}_{\alpha}\partial_{\mu}F^{\nu\alpha}$ - igho Or Fas JFKP Biandi: On For + Op Frx + Ox Frr = 0 For (Dy Fap + Dy Fyx + Dx Fyp) = F KP (2 Fup + 2 Fra - Op Fam) = F * P (2 F & F + L 2 F F a) -) PrThem = - JaFva problem 7: First, we show the following relation R"Rib Rtc Eaber = det R Eilt

First observe that the left-hand side is completly antisymmetric in the indices ijk. So RRRE « E The proportionality is given by choosing iik = 123:R'A R'6 R'3C E doc = det R If R is a rotation matrix then Let R = 1 ; RaiRbi = Sab R^{ia} R^{ib} P^{kd} R^{kc} E^{abc} = R^{kd} E'i^k S^{dc} Ria Rib Eabd = Rkd Eijk The tensor components \mathbf{F}^{ij} transform under the spatial rotations as Fil -> RRF - Ria Ribe ik Be - Red Elih Bd $= \in i_{i}^{i_{k}} (p^{k} g^{k})$ B^d -> R^{kd} B^d = R.B