solutions - exercises 2:

problem 1:
/
We can go to a frame where (/= (§)
by
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In this frame V' will be of the form
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problem 2:

The product of the two boosts is given by
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problem 3:
One can write the rotation as
r.
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And the boost along x as
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In order to generate a general boost, one can
rotate + boost + rotate back
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The genral boost is given by
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The final result is that
rotation+boost+rotation back

IS equivalent to a boost with a rotated
velocity.

problem 4:

The proof follows the same proof for the energy
momentum tensor in the lecture.

Y= Ta SR

73 c L 4230 %) ”%‘( |
= 2 7“%4 § (¢-x,) ”:—’Z‘
= L g9, ) §-x)
=-3) = @)\ -o

problem 5;:
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boundary term =0
(by assumption)
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problem 6:
— A [ F voc /
, Os F - = i ngg an
YT = (O FL)F + Fli 0, 77
— 19" é Fx,d}’:l/

@iq«l.': D F -+ ’)ﬁ /““-") 2t =0

problem 7:

First, we show the following relation
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First observe that the left-hand side
Is completly antisymmetric in the indices ijk.

So
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The proportionality is given by choosing
jk = 123:
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If R is a rotation matrix then
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The tensor componentsF"\ transform under
the spatial rotations as
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