solutions - exercises 2 :
problem 1:
We can go to a frame where $\quad U^{\mu}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$

$$
U^{\mu} u_{\mu}=V^{\wedge} v_{\mu}=-1
$$

In this frame V^{μ} will be of the form

$$
\begin{aligned}
& v^{\mu}=\gamma\left(\frac{1}{v}\right) \\
\Rightarrow \quad & u^{r} v_{\mu}=-\gamma=-\sqrt{\frac{1}{1-v^{2}}} \\
\Rightarrow & |v|=\sqrt{\left.1-\frac{1}{\left(\mu v_{r}\right.}\right)^{2}}
\end{aligned}
$$

problem 2:
The product of the two boosts is given by

$$
\begin{aligned}
& \Lambda_{r}^{K}\left(\varphi_{1}\right) \Lambda^{r}\left(\varphi_{2}\right) \\
& =\left(\begin{array}{ccc}
A_{B} & A & \\
& A & 1 \\
& & 1
\end{array}\right) \\
& A=\cosh \varphi_{1} \cosh \varphi_{2}+\sinh \varphi_{1} \sinh \varphi_{2}= \\
& B=\cosh \left(\varphi_{1}+\varphi_{2}\right)
\end{aligned}
$$

$$
\Lambda_{+}^{r}\left(a_{1}\right) \Lambda_{V}^{k}\left(\varphi_{2}\right)=\Lambda_{v}^{n}\left(\varphi_{2}+\varphi_{2}\right)
$$

problem 3:
One can write the rotation as

$$
\Lambda_{v}=\left(\begin{array}{ll}
\Lambda & \\
& R_{i j}
\end{array}\right)_{v}^{r}
$$

And the boost along x as

$$
\Lambda^{x}=\left(\begin{array}{ccc}
c & -s & \\
-s & c & \\
& & 1
\end{array}\right)
$$

In order to generate a general boost, one can rotate + boost + rotate back

$$
\left(\begin{array}{ll}
1 & \\
& R
\end{array}\right)\left(\Lambda^{x}\right)\left(\begin{array}{ll}
1 & \\
& R^{\top}
\end{array}\right)
$$

The genral boost is given by

$$
\begin{aligned}
& \Delta=\left(\begin{array}{cc}
\gamma & -j v_{i} \\
-\delta_{v_{i}} & \delta_{i i}+\left(\gamma^{-1}\right) \frac{v_{i} v_{i}}{v^{2}}
\end{array}\right) \\
& \binom{1}{R} \Lambda\binom{1}{R^{\top}} \\
& =\left(\begin{array}{cc}
\gamma & -\gamma(R v)_{i} \\
-\gamma(R \cdot v) i & R \delta^{\top} R^{\top}+(\gamma-1) \frac{(R v)_{i}(R v)_{i}}{v^{2}}
\end{array}\right)
\end{aligned}
$$

The final result is that rotation+boost+rotation back is equivalent to a boost with a rotated velocity.
problem 4:
The proof follows the same proof for the energy momentum tensor in the lecture.

$$
\begin{aligned}
\partial^{r} & =\sum q_{n} \delta^{3}\left(x-x_{n}\right) \frac{d x_{n}}{d t} \\
\partial_{i} \partial^{i} & =\sum q_{n} \partial i \delta\left(x-x_{n}\right) \frac{d x_{n}}{\partial t} \\
& =\sum q_{n}\left(-\frac{\partial}{\partial x_{n}} \left\lvert\, \delta\left(x-x_{n}\right) \frac{d x_{n}^{i}}{d t}\right.\right. \\
& =\sum q_{n}\left(-2 \partial_{t}\right) \delta\left(x-x_{n}\right) \\
& =-2 \gamma^{0} \Rightarrow a_{n} j^{r}=0
\end{aligned}
$$

problem 5:

$$
\begin{aligned}
& \partial_{\mu} \gamma^{\mu}=0 \Rightarrow \int^{\mu}=\int a^{3} x \partial^{\mu}=\int a^{3} x\left(\partial_{t} \gamma^{0}\right) \\
& \\
& +\underbrace{\int d^{3} x \vec{\nabla} \vec{j}}
\end{aligned}
$$

boundary term $=0$ (by assumption)

$$
\rightarrow \quad 0=\partial_{t} \int d^{2} x \gamma^{0}=\partial_{t} Q
$$

problem 6:

$$
\begin{aligned}
T_{\rho m}^{\mu \nu} & =F_{\alpha}^{\mu} F^{\nu \alpha}-\frac{1}{\varphi} q^{\mu \nu} F_{\alpha \beta} F^{\alpha \beta} \\
\partial_{\mu} T_{e m}^{\mu \nu}= & \left(\partial_{\mu} F_{a}^{\alpha}\right) F^{\nu \alpha}+F_{\alpha}^{\mu} \partial_{\mu} F^{\nu \alpha} \\
& -\frac{1}{2} q^{\mu \nu}\left(\sigma_{\mu} F_{\alpha \beta}\right) F^{\alpha \beta}
\end{aligned}
$$

Bind: $\quad \partial_{\mu} F_{\alpha \beta}+\partial_{\beta} F_{\mu \alpha}+\partial_{\alpha} F_{\beta \mu}=0$

$$
\begin{aligned}
& F^{\alpha \beta}\left(\partial_{\mu} F_{\alpha \beta}+\partial_{\beta} F_{\mu \alpha}+\partial_{\alpha} F_{\beta \mu}\right) \\
= & F^{\alpha \beta}\left(\partial_{\mu} F_{\alpha \beta}+\partial_{\beta} F_{\mu \alpha}-\partial_{\beta} F_{\alpha \mu}\right) \\
= & F^{\alpha \beta}\left(\partial_{\mu} F_{\alpha \beta}+\alpha \partial_{\beta} F_{\mu_{\alpha}}\right) \\
& \Rightarrow \partial_{\mu} T_{e m}^{\mu}=-\partial_{\alpha} F^{v \alpha}
\end{aligned}
$$

problem 7:
First, we show the following relation

$$
\mathbb{R}^{i a} R^{i b} R^{k c} \epsilon^{a b c}=\operatorname{det} R \epsilon^{i i^{k}}
$$

First observe that the left-hand side is completly antisymmetric in the indices ijk.

So

$$
R R R \in \alpha \in
$$

The proportionality is given by choosing ijk = 123:

$$
R^{1 a} R^{26} R^{3 c} \epsilon^{d b c}=\operatorname{det} R
$$

If R is a rotation matrix then

$$
\begin{gathered}
\operatorname{det} R=1 ; R^{a i} R^{b i}=\delta^{a b} \\
R^{i a} R^{i b} R^{d d} R^{k c} \\
\delta^{d c} \\
\epsilon^{a b c}=R^{b d} \epsilon^{i k} \\
R^{i a} R^{i b} \epsilon^{a b d}=R^{k d} \epsilon^{i j k}
\end{gathered}
$$

The tensor components F^{i}) transform under the spatial rotations as

$$
\begin{aligned}
& F^{i i} \rightarrow R^{i o} R^{i b} F^{a b}=R^{i a} R^{i b} \epsilon^{1 / k} B^{d} \\
&=R^{i d} \epsilon^{i i^{k}} B^{d} \\
&=\epsilon^{i i^{l}}\left(R^{k d} B^{d}\right) \\
& B^{d} \rightarrow B \cdot B
\end{aligned}
$$

