CoM: Conte of mars
step 2:

farces:

$$
\begin{aligned}
& r_{1} m_{1} \omega^{2}=r_{2} m_{2} w^{2}=\frac{m_{1} m_{2}}{R^{2}} G \\
& \frac{r_{1}}{r_{2}}=\frac{m_{2}}{m_{1}} \\
& 1+\frac{r_{1}}{r_{2}}=1+\frac{m_{2}}{m_{1}} \Rightarrow \frac{r_{2}+r_{1}}{r_{2}}=\frac{m_{1}+m_{2}}{m_{1}} \\
& \frac{r_{2}}{R}=\frac{m_{1}}{M} \quad
\end{aligned}
$$

quadmpoles:

$$
\left.\begin{array}{rl}
D_{i j}= & \sum_{(n)} \vec{x}_{1}^{(n)} x_{j}^{(n)} T_{(n)}^{00} \\
T_{(n)}^{\infty 0}=\omega_{(n)} \\
\vec{x}_{1}=r_{1}\left(\begin{array}{c}
\cos \omega t \\
\sin \omega t \\
0
\end{array}\right) \\
x_{2}=r_{2}\binom{-\cos \omega t}{-\sin \omega t} \\
D \otimes & \left(m_{1} r_{1}^{2}+m_{2} r_{2}^{2}\right)
\end{array}\right]
$$ lecture.

$$
\begin{aligned}
& D \alpha \quad\left(m_{1}{\widetilde{m_{2}^{2}}}^{2} R^{2}+m_{2} m_{1}^{2} M_{2}^{2} R^{2}\right) \\
& \alpha \underbrace{\frac{m_{1} m_{2}}{M}}_{\mu} R^{2} \\
& \text { reduced mass }
\end{aligned}
$$

step 3:

$$
\begin{aligned}
& E_{h_{1}}=\frac{1}{2} m_{1} \omega^{2} r_{1}^{2}+\frac{1}{2} m_{2} \omega^{2} r_{2}^{2} \\
& =\frac{1}{2} \omega^{2} M R^{2} \\
& E_{\text {pot }}=-G \frac{v_{1} w_{2}}{R} \\
& w_{1} \gamma_{1} \omega^{2}=\frac{v w_{1} u_{2}}{R^{2}} G \\
& \frac{R}{M} \omega^{2}=\frac{G}{R^{2}} \quad R^{3} \omega^{2}=G M \\
& E_{\text {foot }}=-\frac{R^{2}}{M} \omega^{2} \cdot m_{1} m_{2}=-\mu \omega^{2} R^{2} \\
& =-2 E_{\alpha / n} \\
& F_{f_{0}+\alpha} \sigma_{\omega^{2} R^{2}} \\
& P=\dot{\epsilon}_{\text {tot }} \\
& P_{f w} \propto \frac{26}{5} w^{6}\left[D_{i j} \cdot D_{i j}^{*}-\frac{1}{3}\left|D_{i j}\right|^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& P_{t \omega} \propto G \omega^{6} \mu^{2} R^{4} \\
& E=\mu \omega^{2} R^{2} \alpha \mu \omega^{2}\left(\frac{G-\mu}{\omega^{2}}\right)^{2 / 3} \\
& \alpha \mu \omega^{2 / 3}(G M)^{2 / 3} \\
& \dot{\epsilon}=\mu \omega^{-1 / 3} \dot{\omega}(G \mu)^{2 / 3} \\
& \doteq 6 \omega^{6} \mu^{2}\left(\frac{6 M}{\omega^{2}}\right)^{\frac{4}{3}} \\
& =G^{7 / 3} \omega^{10 / 3} \mu^{2} M^{4 / 3} \\
& \dot{\omega} \omega^{-11 / 3}=G^{5 / 3} \underbrace{M^{2 / 3} \mu}_{\mu^{5 / 3}} \\
& M=M^{2 / 5} \mu^{3 / 5} \\
& w^{-8 / 3}=G^{5 / 3} t \mathcal{M}^{5 / 3}
\end{aligned}
$$

$$
\begin{array}{llll}
& G^{5 / 8} & t^{-3 / 8} & M^{-5 / 8}
\end{array}
$$

