problem 1:

$$
\begin{aligned}
& \Lambda_{i j, l k} D_{i j} D_{l k}^{*} \\
& \Lambda_{i j, e k}=P_{i l} P_{j k}-\frac{1}{2} P_{i j} P_{l k} \\
& P_{i l}=\delta_{i l}-\hat{k}_{i} k_{l} \rightarrow \text { projection into } \\
& \text { the plane } \\
& \text { orthogonal to } \downarrow \\
& D_{i j}=\left(\begin{array}{cc}
1 & i \\
& \\
i & -1 \\
\\
& \\
& \\
&
\end{array}\right) \\
& \text { z-direction: } \quad P_{i_{e}}=\left(\begin{array}{lll}
1 & \\
& 1 & \\
& & 0
\end{array}\right) \\
& P_{i l} D_{j i}=D_{l j} \\
& \Omega D D=D_{i j} D_{i j}^{4}-0 \\
& =4
\end{aligned}
$$

y-direction: $\operatorname{pl}_{2}=\left(\begin{array}{lll}1 & & \\ & 0 & \\ & & 1\end{array}\right)$

$$
\begin{aligned}
& P_{k} D_{i j} P_{j k}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)_{l k} \\
& \Lambda D D=1-\frac{1}{2}=\frac{1}{2} \\
& \Omega D D=\operatorname{Tr} P D P D-\frac{1}{2}(\operatorname{Tr} P D)^{2}
\end{aligned}
$$

There is a factor 8 between the radiation in the plane compared to the radiation orthogonal to the plane of the binary system.
problem 2:

$$
\begin{aligned}
& \vec{x} \rightarrow \vec{x}+\vec{a}=\vec{x}^{\prime} \\
& \rho^{\prime}\left(\vec{x}^{\prime}\right)=\rho^{\prime}(\vec{x}+\vec{a})=\rho(\vec{x}) \\
& D_{i}^{\prime}=\int d x^{\prime} x^{\prime} \rho^{\prime}\left(x^{\prime}\right) \\
& =\int d x^{\prime} x^{\prime} \rho(x) \\
& =\int d x(\vec{x}+\vec{a}) \rho(x)=D+\vec{a} M \\
& \xrightarrow[\mid(\rho a)]{\rightarrow} \xrightarrow{\rho^{\prime}\left(x^{\prime}\right)}+
\end{aligned}
$$

One of the standard arguments is that the monopole vanishes for the system and the radiation does not depend on the coordinate system chosen!
problem 3:

$$
\begin{aligned}
& M=\int d^{3} x T^{\infty} \\
& \partial_{t} M=\int d^{2} x \partial_{0} T^{00} \\
& =-\int d^{3} \times \partial_{i} T^{i 0}=\text { susface term } \\
& D i=\int d^{?} \times x^{i} T^{\infty}=0 \\
& \partial_{0}^{2} T^{\infty}=\partial_{i} \partial_{i} T^{i} \\
& \partial_{0}^{2} D^{\prime}=\int d^{?} \times x^{i} \partial_{j} \partial_{e} T^{j e}=s c_{s} f a \operatorname{lecen} \\
& =0 \\
& M=\text { coust } \\
& D^{\prime}=\text { coust }+t \times \text { coust } \\
& P \alpha \frac{2 G \omega^{4}}{5} \Lambda(k) D(\omega) D^{4}(\omega) \\
& D(\omega)=\sum \ldots D\left(\omega_{1}\right)
\end{aligned}
$$

Fourier transform:

$$
\begin{aligned}
& F T(1)=\delta(\omega) \\
& F T(t)=\partial_{\nu} \delta(\omega)
\end{aligned}
$$

the support of these function is basically $\mathrm{w}=0$ and hence there is no radiation produced.

The same argument can also be applied in ED.

$$
\partial_{r} \gamma^{a}=0 \quad S_{e_{0}}=\gamma^{0}
$$

So the ED radiation is also not coordinate dependent even if the monopole (the total charge of the system) does not vanish.

