problem 1:

$$
\partial_{\mu} F^{\mu v}=-j^{v}
$$

with $F^{\mu v}=\partial^{a} A^{v}-\partial^{v} A^{n}$

$$
\partial_{\mu} \partial^{\sigma} A^{2}-\partial_{\mu} \partial^{v} A^{\sigma}=-\gamma^{v}
$$

with Lorenz gauge:

$$
\partial_{\mu} A^{\mu}=0 \Rightarrow \quad \Pi A^{\mu}=-\gamma^{n}
$$

for a plane wave:

$$
\begin{aligned}
A_{\mu} & =\epsilon_{\mu} e^{i k_{\lambda} \lambda}+c . c \\
\rightarrow k_{\mu} k \theta A_{v} & =0 \quad \rightarrow k_{\mu k l}=0
\end{aligned}
$$

gauge trafo:

$$
\begin{aligned}
& A_{\mu} \rightarrow A_{\mu}^{\prime}=A_{\mu}+\partial_{\mu} \alpha(x \mu) \\
& \alpha(x)=-1 \bar{\alpha} e^{i k x}+C \cdot c \\
\rightarrow & \epsilon_{\mu} \rightarrow \epsilon_{\mu}+k_{\mu} \bar{\alpha}
\end{aligned}
$$

-> only 2 out of 4 degrees of freedom survive

$$
\begin{gathered}
\text { E.g. suppose } \hat{k} / / z \\
k^{r}=\left(\begin{array}{l}
k \\
0 \\
0 \\
6
\end{array}\right) ; k_{r}=\left(\begin{array}{c}
-k \\
0 \\
b
\end{array}\right) \\
A_{r}=\left(\begin{array}{l}
A_{0} \\
A_{v} \\
A_{y} \\
A_{z}
\end{array}\right) \rightarrow k^{n} A_{r}=0 \\
A_{r}=\left(\begin{array}{c}
A_{0} \\
A_{x} \\
A_{y} \\
-A_{0}
\end{array}\right)=\left(\begin{array}{c}
e_{0} \\
e_{x} \\
e_{y} \\
-e_{r}
\end{array}\right) e^{i k x}
\end{gathered}
$$

residual gauge: $\quad e_{\mu} \rightarrow e_{\mu}+\bar{\alpha} k \mu$
you can use the residual gauge dof to remove A0

$$
A_{r}=\left(\begin{array}{l}
0 \\
A_{x} \\
A_{y} \\
0
\end{array}\right)
$$

Here Ax and By would be the two transverse degrees of freedom.
problem 2: $\begin{array}{llll}\vec{k} & \| & L^{\prime}>\left(\begin{array}{l}k \\ 0 \\ 0\end{array}\right)\end{array}$

$$
A_{r}=\left(\begin{array}{l}
A_{0} \\
A_{x} \\
A_{y} \\
A_{2}
\end{array}\right)
$$

rotation around the z-axis:

$$
\begin{aligned}
& \left.A_{\mu}-\right) \Lambda_{\mu}^{v} A_{\nu} \quad\left(\Lambda_{r}^{v}=\frac{\partial x^{\nu}}{\partial_{x^{\prime} \mu}}\right) \\
& \Lambda_{\mu}^{v}=\left(\begin{array}{ccc}
1 & & c \\
c & s \\
-s & c & \\
& & s=\cos \alpha \\
s=\sin \alpha
\end{array}\right. \\
& \left.\begin{array}{l}
A_{0} \rightarrow A_{0} \\
A_{t} \rightarrow A_{z}
\end{array}\right\} \quad R=0 \\
& \begin{array}{l|l}
A_{x} \rightarrow C A_{x}+S A_{y} & \text { so(2) }
\end{array} \\
& \left.\begin{array}{l}
A_{t}=A_{x}+i A_{y} \\
A_{-}=A_{x}-i A_{y}
\end{array}\right\} \begin{array}{l}
\text { circular } \\
\text { polarization }
\end{array} \\
& A_{x} \rightarrow c A_{x}+s A_{y}+i A_{y}-\operatorname{si} A_{x} \\
& e^{i \alpha h} A_{+} \rightarrow \bar{c}\left(A_{x}+i A_{y}\right)+i \bar{S}\left(A_{x}+i A_{y}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{C}=c ; s=-\bar{s} \quad \Rightarrow \quad h=-1 \\
& C=\cos \alpha \quad \bar{s}=\sin \alpha \\
& \bar{c}=\cosh \alpha \quad \bar{s}=\sinh \alpha \\
& A_{-}-\quad h=+1
\end{aligned}
$$

The circular polarizations are the helicity eigenstates with $\mathrm{h}=+-1$

$$
\begin{aligned}
& A_{+1 /} \rightarrow A_{t / 2} e^{i \alpha(-/+)} \\
& S O(2)=\operatorname{SU}(1)
\end{aligned}
$$

$$
\begin{array}{r}
\text { problem 3: } \\
h_{\mu \nu}=\binom{h_{+} h_{x}}{h_{x}-h_{+}} \\
\left.h_{\mu v}-\right) \Lambda_{f}^{\alpha} \Lambda_{v}^{\beta} k_{\alpha p} \\
0 \cdot h \cdot O^{\top} \\
\Rightarrow\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right)\binom{h_{+}}{h_{x}-h_{+}}\left(\begin{array}{c}
c \\
h_{x} \\
s
\end{array}\right)
\end{array}
$$

$$
\begin{aligned}
& \binom{h_{+}}{h_{x}} \rightarrow\left(\begin{array}{cc}
\cos 2 \alpha & \sin 2 \alpha \\
-\sin 2 \alpha & \cos 2 \alpha
\end{array}\right)\binom{h_{+}}{h_{x}} \\
& \left(h_{+} \pm i h_{x}\right) \rightarrow e^{2 i \alpha(-/+)}\left(h_{+} \pm i h_{x}\right)
\end{aligned}
$$

These are again the circular polarizations and their helicities are +-2 .

circular polarizations

