Exercises, week 6

1 Covariant Bianchi identity

Show that for the gauge potential A_{μ} the field strenght in GR reduces to the ordinary definition

$$
\begin{equation*}
F_{\mu \nu}=\nabla_{\mu} A_{\nu}-\nabla_{\nu} A_{\mu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{1}
\end{equation*}
$$

and that the Bianchi identity reduces to the ordinary definition

$$
\begin{equation*}
\nabla_{\alpha} F_{\mu \nu}+\nabla_{\nu} F_{\alpha \mu}+\nabla_{\mu} F_{\nu \alpha}=\partial_{\alpha} F_{\mu \nu}+\partial_{\nu} F_{\alpha \mu}+\partial_{\mu} F_{\nu \alpha} \tag{2}
\end{equation*}
$$

2 Sphere in 2D

Consider a space with Euclidean signature and 2D line element of a sphere

$$
\begin{equation*}
d s^{2}=L^{2}\left(d \theta^{2}+\cos ^{2}(\theta) d \phi^{2}\right) \tag{3}
\end{equation*}
$$

Determine the non-vanishing entries of the Christoffel symbol, the Riemann tensor $R_{\nu \kappa \lambda}^{\mu}$, the Ricci tensor $R_{\nu \lambda}=R_{\nu \mu \lambda}^{\mu}$ and the curvature scalar $R=$ $R_{\nu \mu \lambda}^{\mu} g^{\nu \lambda}$.

3 Riemann tensor - decomposition in 3D

We have seen that in 2D the Riemann tensor is related to the curvature scalar as

$$
\begin{equation*}
R_{\mu \nu \kappa \lambda}=\frac{1}{2}\left(g_{\mu \kappa} g_{\nu \lambda}-g_{\mu \lambda} g_{\nu \kappa}\right) R \tag{4}
\end{equation*}
$$

In 3D, the Riemann tensor has 6 degrees of freedom and it is tempting to express the Riemann tensor in terms of the Ricci tensor (that also has 6 degrees of freedom in 3D). In fact, this is possible and the Riemann tensor can be written as a linear combination of

$$
\begin{equation*}
\left(g_{\mu \kappa} g_{\nu \lambda}-g_{\mu \lambda} g_{\nu \kappa}\right) R \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(g_{\mu \kappa} R_{\nu \lambda}-g_{\mu \lambda} R_{\nu \kappa}+g_{\nu \lambda} R_{\mu \kappa}-g_{\nu \kappa} R_{\mu \lambda}\right) . \tag{6}
\end{equation*}
$$

Check that these terms have the right symmetries (symmetric under $12 \leftrightarrow 34$, antisymmetric under $1 \leftrightarrow 2$ and $3 \leftrightarrow 4$ and cyclic under permutation of 234).

Fix the proportionality coefficients (in 3D) by the requirement that $R_{\mu \nu}$ and R are correctly reproduced.

4 Riemann tensor - decomposition in 4D

In 4 D , the Riemann tensor contains 20 degrees of freedom, while $R_{\mu \nu}$ contains 10. Still, one can decompose the Riemann tensor in terms of the form (5) and (6) and a remainder $C_{\mu \nu \kappa \lambda}$ that fulfills

$$
\begin{equation*}
g^{\mu \kappa} C_{\mu \nu \kappa \lambda}=0 \tag{7}
\end{equation*}
$$

What are the proportionality coefficients (in 4D)? How many degrees of freedom does C have?

