Exercises, week 2

1 Relative velocity

Since velocities do not behave additively in special relativity, there is the question how to determine the relative velocities between two objects in a frameindependent way. Given two velocities U^{μ} and V^{μ}, one way of defining this is using

$$
\begin{equation*}
\Delta v=\sqrt{1-\frac{1}{\left(U_{\mu} V^{\mu}\right)^{2}}} \tag{1}
\end{equation*}
$$

Derive this expression by boosting into the frame where one of the objects is at rest.

2 Rapidities

We have seen that the Lorentz-transformation for a boost in the x -direction is of the form

$$
\Lambda_{\nu}^{\mu}(\phi)=\left(\begin{array}{cccc}
\cosh (\phi) & -\sinh (\phi) & 0 & 0 \tag{2}\\
-\sinh (\phi) & \cosh (\phi) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Show that the rapidity ϕ indeed behaves additively by calculating $\Lambda_{\nu}^{\mu}\left(\phi_{1}\right) \Lambda^{\nu}{ }_{\kappa}\left(\phi_{2}\right)$.

3 General boosts

Show that boosts in a general direction are given by

$$
\Lambda_{\nu}^{\mu}(\phi)=\left(\begin{array}{cc}
\gamma & -\gamma \vec{v}_{i} \tag{3}\\
-\gamma \vec{v}_{j} & \delta_{i j}+(\gamma-1) \vec{v}_{i} \vec{v}_{j} / v^{2}
\end{array}\right)
$$

by rotating a boost in the x -direction into other directions.

4 Current conservation

Show that the following current is conserved (q_{n} is the charge for the particle n)

$$
\begin{equation*}
J^{\mu}=\sum_{n} q_{n} \delta\left(\vec{x}-\vec{x}_{n}\right) \frac{d x_{n}^{\mu}}{d t} . \tag{4}
\end{equation*}
$$

5 Charge conservation

Show that current conservation $\partial_{\mu} J^{\mu}$ implies that the following charge is timeindependent (assume that the current falls off quickly enough at infinity)

$$
\begin{equation*}
Q=\int d^{3} x J^{0} \tag{5}
\end{equation*}
$$

6 Electromagnetic energy-momentum tensor

Show that the following tensor involving the field strength $F^{\mu \nu}$

$$
\begin{equation*}
T_{e m}^{\mu \nu}=F_{\alpha}^{\mu} F^{\nu \alpha}-\frac{1}{4} \eta^{\mu \nu} F_{\alpha \beta} F^{\alpha \beta} \tag{6}
\end{equation*}
$$

has as the divergence

$$
\begin{equation*}
\partial_{\mu} T_{e m}^{\mu \nu}=-F_{\gamma}^{\nu} J^{\gamma} \tag{7}
\end{equation*}
$$

by writing the field strength tensor in terms of the potential A^{μ} and using Maxwell's equations (you also can use the Bianchi identity from last week to simplify this derivation).

7 Magnetic field

In special relativity, the spatial coordinates of the field stregth tensor are given by the magnetic field

$$
\begin{equation*}
F^{i j}=\epsilon^{i j k} B_{k} \tag{8}
\end{equation*}
$$

Show that B_{k} transforms as 3 -vector under normal spatial roations even though $F^{i j}$ transform as an antisymmetric tensor.

