tensors

We study the behavior of several quantities
under coordinate transformations.

Consider a contravariant vector: x 4 x'
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with the prototypical example the differential:
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Notice that in SR, the coordinate itself was a
contravariant vector:
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In GR it is not: X't - g()(")
Consider a covariant vector:
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with the prototypical example
the derivative acting on a scalar:
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In general, a tensor
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with the prototype the metric
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in order to have a invariant line element
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Contractions can be used to form
scalars:
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The metric can also be used to lower/raise
indices:
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are related by raising/lowering indices.
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Notice that the 5 . IS @ mixed tensor
with constant elements.
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One infamous exception to this notation
Is the affine connection T’",,\which IS not
a tensor, but a 'symbol’

Remember: the goal is to make out
of all physical laws tensor relations
-> we can deduce them in any coordinate

system.

tensor algebra:

A) linear combinations:
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B) direct product

T = A2
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C) contraction:




So most analysis of SR carries over to the
tensor analysis of GR. Notable differences
are: derivatives of tensors, Levi-Civita symbol

tensor densities:

One important class of non-tensors are
tensor densities. Consider
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Jabobian of the coordinate transformation
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A quantity as g is called a scalar density,
since it transforms as a scalar up to factors
of the Jacobian.

Tensor densities are defined accordingly:
They transform as tensors up to the Jacobian.
The weight of a tensor density is determined
by the number of factors | d"'{ ‘
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For example: g is a scalar density of

weight -2.

Any tensor density can be made a

tensor by multiplying with an

appropriate factor W,
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For example the integration measure 7
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has weight 1.

This means
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Levi-Civita symbol

We define
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Is this a tensor in GR?
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so ¢"*' isatensor density with weight -1.

This means that N
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IS a tensor. ust «
What about Feasas gelek,
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This also has weight -1, so a tensor is
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but &, does not only involve 1,-1,0.



