The Newton limit
In order to make contact with Newton's theory, we consider a particle that is moving slowly (non-relativistically) in a stationary gravitational backround.

$$
\begin{aligned}
& \frac{d^{2} \mu}{d \tau^{2}}+\Gamma^{\mu}{ }_{\alpha \beta} \frac{\partial x^{\alpha}}{\partial T} \frac{\partial x^{\beta}}{\partial T}=0 \\
& \frac{\partial x^{k}}{\partial T}=\frac{d t}{d t}\left(\frac{1}{v}\right) \quad \vec{V} \ll 1 \\
& =\left(\begin{array}{l}
1 \\
0 \\
8
\end{array}\right) \frac{d t}{d T} \\
& \frac{d^{2} x}{\partial T^{2}}+\Gamma_{00}^{r}\left(\frac{\partial t}{\partial T}\right)^{2}=0 \text { stationary } \\
& \Gamma_{00}^{\mu} \approx-\frac{1}{2} g^{\mu} \frac{\partial g_{00}}{\partial x^{\nu}} \quad\left(\frac{\partial J_{000}}{\partial t}=0\right)
\end{aligned}
$$

If gravitational effects are weak, the metric should be close to the Minkowski metric

$$
\begin{aligned}
& g_{\alpha \beta}=\eta_{\alpha p}+h_{\alpha p} \quad(h \ll 1) \\
& \Gamma_{\infty}=-\frac{1}{2} \eta^{\mu \nu} \frac{\partial h_{\infty}}{\partial x^{v}}
\end{aligned}
$$

$$
\begin{aligned}
\Leftrightarrow \frac{d^{2} \vec{x}}{d T^{2}} & =\frac{1}{2}\left(\frac{d t}{\partial T}\right)^{2} \vec{\nabla} h_{\infty} \\
\frac{d^{2} t}{d \tau^{2}} & =0 \rightarrow t=c T+a \\
\frac{d^{2} \vec{x}}{d t^{2}} & =\frac{1}{2} \vec{D} h_{\infty}=-\vec{\nabla} \Phi \\
h_{00} & =-2 \underline{\Phi}+\text { const }
\end{aligned}
$$

So the 00 component of the metric has to contain the gravitational potential:

$$
g_{00}=-(1+2 \Phi)
$$

and Φ is the gravitational potential as in the Newton force, e.g.

$$
\Phi=-\frac{G M}{r}
$$

for a heavy central object.

Time dilatation revisited:
The proper time in the free falling frame is given by

$$
d T^{2}=-d S^{L}=-\eta_{\alpha \beta} d S^{\alpha} d S^{\beta}
$$

and in general

$$
d T^{2}=-d s^{2}=-g_{\mu v} d x^{r} d x^{v}
$$

So the time dilatation is given by

$$
\begin{aligned}
\left(\frac{d \tau}{d t}\right)^{2} & =-g_{u} \frac{d x^{\mu}}{d t} \frac{d x^{v}}{d t} \quad x^{\mu}=\binom{t}{\vec{x}} \\
\simeq & =(1+2 \Phi)-\vec{v}^{2} \\
& \quad \vec{v}=\frac{d \vec{x}}{d t}
\end{aligned}
$$

GR five dilatation from

Special relativistic grave. pot.
So if a light source produces a monochromatic light and it is observed at another place, the observed frequency will shift

$$
\frac{\Delta \nu}{\nu}=\Phi\left(x_{2}\right)-\Phi\left(x_{1}\right)
$$

[remember Pound/Rebka and Moessbauer]

Interpretation with the weak E.P.
The photon of frequency \downarrow carries an energy and a mass $\Delta m_{1}=-h \nu_{\wedge}$
at the same time, the observed photon carries mass and energy

$$
\Delta n_{L}=h v_{2}
$$

But the photon also carries gravitational energy from the gravitational potential.

The weak E.P. demands that after the absorption the mass of the combined system does not change

$$
\begin{aligned}
(0= & \Delta u_{1}\left(1+\Phi_{1}\right) \\
& +\Delta m_{2}\left(1+\Phi_{2}\right) \\
-\frac{\Delta m_{2}}{1 m_{1}}= & \frac{\nu_{2}}{\nabla_{1}}=\frac{1+\Phi_{1}}{1+\Phi_{2}} \approx 1+\Phi_{1}-\Phi_{2}
\end{aligned}
$$

Example with rockets:
Imagine 2 rockets with a velocity v, accelerating in tandem and sending light signals

$$
\frac{\Delta \nu}{\nu} \simeq-\frac{\Delta V}{C} \simeq-\frac{D a}{c^{2}}
$$

Now consider a tower on the earth's surface. If a signal is sent from the base to the top, the situation should be equivalent to the two rockets with $\mathrm{a}=\mathrm{g}$.

$$
\begin{aligned}
& \vec{\nabla} \underline{\Phi}=\vec{g} \\
& -g_{c^{2}} D \\
& \quad \propto \Phi_{1}-\Phi_{2}
\end{aligned}
$$

$$
\int_{1}^{g} \quad \frac{\Delta \nu}{\nu}=-g_{c^{2}}^{D}=
$$

$$
\longrightarrow
$$

Tensor analysis

So far, we used the Principle of Equivalence: There is a free falling frame where gravity is absent and the other laws of physics are SR.

The laws in a general frame can then be deduced via trasforming to the free falling frame.

One way of simplifying this step, is by formulating all laws in a general covariant way -> Principle of general covariance.

Notice that there is a difference between special relativity and general relativity: Special relativity is a symmetry. In General relativity, the metric changes by the transformations and the "symmetry" tells how gravity will couple/act in different contexts.

