Every conserved four-current (that also
vanishes at infinity) allows to construct
a conserved (time-independent) charge
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Energy momentum tensor

Instead of the charge, we can construct a
four-current of energy and momentum
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So T is symmetric under exchanging the
two indices. It is also a tensor.

Is it conserved?

(D/A'T'PN: &
.LN (e
2T < 2T ,.
— o dXu >
— _ I\ (R 24

Ax

= 7 ’wa -2 S (% -7, ¢¢)

A

+ C pie §x-%uh)
~ -, T + &°

))..« : = G\( J
0( — S S J a
il = T FE-Zw) azﬂ

ﬁ

Is called the force density.
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In certain situations the force density vanishes.
For example, consider local scatterings. Then

ZF: does not change in the
“ interaction

For electromagnetic forces, it does not vanish:
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However, we can fix this by adding the
electromagentic energy-momentum tensor
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Lagrangian formalism

Consider one degree of freedom as a function
of time only C‘[t)

There are two equivalent ways to encode
its dynamics
A) Hamiltonian formalism
B) Lagrange formalism
Given some Hamiltonian, e.q.
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The equation of motion (EoM) is given by
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Alternatively, one can start from the Lagrange
density (=Legendre transformation of the
Hamiltonian):
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and then solve the Euler-Lagrange equations
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The Euler-Lagrange equations imply the
Hamiltonian equations. Euler-Lagrange
equation is one second order differential
equation, while the Hamiltonian equations
are two first-order equations.

The Euler-Lagrange equations can be
understood to arise from a variational principle:

Consider the action:

S= jdf 5@(4, 7','6)

and the variations with respect to the
degree of freedom
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So the solution to the equation of motion
extremizes the action.
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Furthermore, to write down a theory, we only
need to know the Lagrange density of

and the dynamics follows from

extremizing the action.

This Is in many cases easier, since the

Lagrange density is a scalar under Lorentz
transformations.

So far we discussed only a single particle in

1D, but the concept generalizes, e.g. to fields
in 34+ 1 dimensions.

Electrodynamics:
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