Construction of maximally symmetric spaces

We have seen that maximally symmetric spaces

are unique as long as they agree in signature
and curvature.

Hence it is sufficient to construct a
prototype for these spaces. All other
maximally symmetric spaces will be related
by coordinate transformations.

Consider a maximally symmetric space
with signature
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into the space with N+1 dimensions and
line element
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and hence
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The induced metric is accordingly
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This metric leads to the Christoffel symbol

and Ricci scalar
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This is a maximally symmetric

space.




The symmetries are inherited from the
N+1 dimensional space:
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A) Transformations that leave z invariant

lead to rotations/Lorentz-transformations
In N dimensions
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B) Quasitranslations
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That these are really the symmetries has

to be checked by calculating the

corresponding Killing vectors.
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Which turns out to be antisymmetricin v oy
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after some algebra.

B) Likewise, for the quasitranslations
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Can be checked explicitly.




Geodesic equation:
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Using the expression for the Christoffel
symbol . A
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and the normalization of the geodesic
ALy o b
T & adﬁ =\
this simplifies to
L
ek + k=0
ST

Solutions of this equation are given by
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where the initial conditions are given by
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Above construction obviously leads only to
positive curvature
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To obtain a space with negative curvature,
one can follow the same steps with
the constraint

O s 1
and the N+1 dimensional line element
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with curvature
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The flat case is obtained from either metric
in the limit
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Notice that this metric can also be

brought to the more familiar form from

cosmology by using the coordinate

transformation (K>0)
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In the new coordinates the line elements

reads
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Reminder: dS space in cosmology

Remember that we found this metric earlier

as a solution to the Einstein equation

with a cosmological constant.

Lagrangian/action
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In vacuum (CC only)
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