Construction of maximally symmetric spaces

We have seen that maximally symmetric spaces are unique as long as they agree in signature and curvature.

Hence it is sufficient to construct a prototype for these spaces. All other maximally symmetric spaces will be related by coordinate transformations.

Consider a maximally symmetric space with signature

$$M_{\mu\nu} = \begin{pmatrix} \pm \\ \pm \\ \pm \end{pmatrix}$$

and the following embedding

into the space with N+1 dimensions and line element

The constraint turns into

That these are really the symmetries has to be checked by calculating the corresponding Killing vectors. A) $x'' = \bigwedge {}^{k} x'$ with April 2 yrx 2 yrx S Apr ~ Sp + Sp with Nryvk+ Nryr = 0 The Killing vector is then $\times^{h'} = \times^{h} + \int^{h}$ St = Nt x Sp= gro D x xk We find then $D_{v} = g_{\mu \lambda} \partial_{v}^{\lambda} + \Gamma_{\mu v} \{ \lambda + 1 \}$ Dugp Nt xk

Which turns out to be antisymmetric in $\neg \Box \mu$ after some algebra. B) Likewise, for the quasitranslations Xt= xt+ all (1- 1 x x y 50 + 0(a)) $4 5^{h} = a^{h} \sqrt{1 - Kx3x^{n}}$ Iv = Jrr Sh $D_v \xi_{\mu} + D_{y_{\mu}} \xi_{\nu} = 0$ and Can be checked explicitly.

Above construction obviously leads only to positive curvature

Notice that this metric can also be brought to the more familiar form from cosmology by using the coordinate transformation (K>0)

 $\begin{aligned} t &= -\frac{1}{2} \begin{bmatrix} x \times cosh[V_{RL}t'] \\ &= \gamma E \begin{bmatrix} z \\ z \end{bmatrix} \\ &+ (1 + \frac{k \times^{2}}{2}) Sinh[(J_{R}t)] \end{aligned}$ $\begin{array}{c} \chi = \overrightarrow{\chi} \cdot \overrightarrow{\chi} \\ i \ 1 \mu v = \begin{pmatrix} 1 \\ -\underline{1} \end{pmatrix} \end{array}$ $x^{\mu} = x^{\prime \mu} \cdot exp(\gamma_{kt})$

In the new coordinates the line elements reads

 $ds^{2} = dt^{2} - a^{2}(t') dx' dx'$

with

alt) = exp VKt

