Irreducible representations of the rotation group

We are interested in the representations of the rotation group with the algebra

$$
\left.\left[j_{i}, \partial_{j}\right]=i \epsilon_{i j L}\right]_{k} \quad i, k \in 1,2 \beta
$$

Since the operators do not commute, we can diagonalize at most one of the them.

However, consider

$$
\partial^{2}=\sum_{i} \partial_{i}^{L}
$$

Then

$$
\begin{aligned}
{\left[\partial^{2}, \partial_{i}\right] } & =\sum_{k}\left[\partial_{L}^{2}, \partial_{i}\right] \\
& =\sum_{k} \partial_{k}\left[\partial_{k}, \partial_{i}\right]+\left[y_{k,} \partial_{i}\right] \partial_{k} \\
& =\sum_{k} i \epsilon_{i)^{k}}\left\{\partial_{k} \partial_{j}+\partial_{j} \partial_{k}\right\} \\
& =0
\end{aligned}
$$

Hence we can diagonalize

$$
\begin{gathered}
\partial^{L} \text { and } \partial_{z} \\
\partial^{L}|\alpha, \beta\rangle=\alpha\left|\alpha_{1} \beta\right\rangle \\
\partial_{z}|\alpha, \beta\rangle=\beta(\alpha, \beta)
\end{gathered}
$$

Now consider the ladder operators

$$
\begin{aligned}
& \partial t=\partial x+i \partial y \\
& \partial-=\partial x-i \partial y
\end{aligned}
$$

Then

$$
\begin{aligned}
{\left[\partial_{t_{1}} \partial_{+}\right] } & =\left[\partial_{t_{1}} \partial_{x}\right]+i\left[\partial_{t}, \partial_{y}\right] \\
& =i y^{+} \partial x=\partial+
\end{aligned}
$$

also: $[\partial t, \partial-]=-\partial-$
and

$$
[J+\cdots-]=2 \partial x
$$

and obviously

$$
\left[\partial \pm, \partial^{2}\right]=0
$$

What are the quantum numbers of

$$
\begin{aligned}
\partial+|\alpha, \beta\rangle & \text { and } \partial-\left|\alpha_{1} \beta\right\rangle ? \\
\partial^{2} \partial \pm(\alpha, \beta\rangle & =\partial \pm \partial^{2}(\alpha, \beta\rangle \\
& =\alpha \partial \pm(\alpha, \beta)
\end{aligned}
$$

But

$$
\begin{aligned}
\partial_{+} \partial_{+}|\alpha, \beta\rangle & =\partial_{+}+\partial_{+} \partial_{+}|\alpha, \beta\rangle \\
& =(\beta+1) \partial_{+}|\alpha, \beta\rangle
\end{aligned}
$$

Hence

$$
\partial+|\alpha, \beta\rangle=N|\alpha, \beta+1\rangle
$$

Likeswise

$$
\left.\partial+\left|\alpha_{1}, \beta\right\rangle=N \mid \alpha_{1} \beta-1\right)
$$

Could $\mathrm{N}=0$ at some point and terminate the series?

Now consider the norm of $\partial+|\alpha, \beta\rangle$,
The hermitian conjugate of ∂t

$$
(\partial+)^{+}=\partial-
$$

yields

$$
\left\langle\alpha, \beta \mid g_{-}\right\rangle_{+}|\alpha, \beta\rangle \geqslant 0
$$

and

$$
\left\langle\alpha_{1} \beta\right| \partial+\gamma-\left|\alpha_{1} \beta\right\rangle \geqslant 0
$$

Hence also

$$
\begin{aligned}
& \langle\alpha, \beta| \frac{1}{2}(\partial+\partial-+\partial-\partial+)|\alpha, \beta\rangle>0 \\
& \frac{1}{2}\left(\gamma+\partial-+\partial-\gamma_{+}\right)=\partial_{x}^{2}+\partial_{y}^{2}=\partial^{2}-\partial_{x}^{2} \\
& h \quad \alpha-\beta^{2} \geqslant 0
\end{aligned}
$$

Hence the chain of eigenstates has to terminate in both directions and there are minimal and maximal values of β.

Using

$$
\partial+\partial-=\partial^{2}-\partial_{t}^{2}+\partial t
$$

and

$$
\partial-\partial t=\partial^{2}-\partial_{t}^{2}-\partial z
$$

One obtains for the minimal β

$$
\begin{aligned}
& 0=\left\langle\alpha, \beta_{\min }\right| \partial^{t} j^{-}\left|\alpha, \beta_{\min }\right\rangle \\
\Leftrightarrow & \alpha-\beta_{\min }^{2}+\beta_{\min }=0
\end{aligned}
$$

And likeswise

$$
\alpha-\beta_{\text {may }}^{2}-\beta_{\text {max }}=0
$$

Accordingly one finds

$$
\begin{gathered}
-\beta_{\min }=+\beta_{\max }=\alpha \\
L \quad \partial^{2}|\ell, m\rangle=\ell(\ell+1)(\ell, m) \\
\partial r(\ell, m\rangle=m(l, m)
\end{gathered}
$$

I has to be half-integer and positive and m in $[-\mathrm{I}, \mathrm{I}]$.

Examples:

$$
e=\frac{1}{2}: \quad J_{i}=\frac{1}{2} \sigma_{i}
$$

whit the Pauli matrices

$$
l=1
$$

$$
\begin{aligned}
& \sigma_{t}=\left(\begin{array}{cc}
0 & -i \\
i & 0 \\
& 0
\end{array}\right) \\
& \sigma_{x}=\left(\begin{array}{ccc}
0 & \\
& 0 & i \\
-i & 0
\end{array}\right) \\
& \sigma_{y}=\left(\begin{array}{ccc}
0 & & i \\
-i & 0 & 0
\end{array}\right)
\end{aligned}
$$

As an example of a reducible representation, consider a rank 2 tensor.

This contains representations with $I=2,1,0$.
Total number of degrees of freedom is

$$
5+3+1=9
$$

