Irreducible representations of the
rotation group

We are interested in the representations
of the rotation group with the algebra
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Since the operators do not commute,
we can diagonalize at most one of the them.

However, consider
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Hence we can diagonalize
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Now consider the ladder operators
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What are the quantum numbers of
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Could N=0 at some point and

terminate the series?




Now consider the norm of rc\ t '*!l@ D,
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Hence the chain of eigenstates

has to terminate in both directions and there

are minimal and maximal values of S




and
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One obtains for the minimal 6
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Accordingly one finds
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| has to be half-integer and positive and
min [-, I].
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As an example of a reducible representation,

consider a rank 2 tensor.

This contains representations with | = 2,1,0.

Total number of degrees of freedom is

5+ 3+1=9




