Using the equation of state Ansatz, one obtains for energy-momentum conservation

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(e a^{3}\right) & =-3 p a^{3} \frac{a}{a} \\
\Leftrightarrow \frac{\partial}{\partial a}\left(e a^{3}\right) & =-3 p a^{3} \approx-3 c e a^{3} \\
\frac{1}{1+c} \frac{d e}{e} & \simeq-3 \frac{d a}{a} \\
e & \approx a^{-3(1+c)}
\end{aligned}
$$

$C=0$: matter domination

$$
\begin{aligned}
& e \propto a^{-3} ;\left(e a^{3}\right)=E_{\text {total }}=\text { cost. } \\
& e \propto 1 / v
\end{aligned}
$$

The energy density is made from the mass of the particles in the plasma. The energy density goes down with the volume (~dilution).
$c=\frac{1}{3}$; radiation domination
$\rho \alpha a^{-4} \quad$ There is still dilution due also the wavelength of the radiation (think photons) is stretched.
$C=-1 \quad$ Cosmological constant (CC)

$$
\begin{aligned}
& \quad e=\text { canst, Ftotal } \propto a^{3} \propto V \\
& c=-\frac{1}{3}: \text { curvature } \\
& e \propto a^{-2}
\end{aligned}
$$

Now imagine that there are different components in th Universe, e.g. there is a dominant contribution of radiation and a subdominant contribution by matter.

Since the Universe is expanding, the radiation is more diluted than matter

$$
R D<a^{-4} \quad i \quad M D \propto a^{-3}
$$

In general: radiation->matter->curvature->CC

In our Universe, curvature seems to be small. We had radiation domination in the beginning, then matter domination and entered CC domination some time ago.

Friedmann equation:

$$
\begin{aligned}
& H^{2}=\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} e \alpha a^{-3(u+c)} \\
& \frac{d a}{-\frac{3(1+c)}{2}+1}=d t
\end{aligned}
$$

$$
a(t) \alpha \quad t^{\frac{2}{3(u+c)}}
$$

$R D\left(c=\frac{1}{3}\right) \quad M D(c=0) \quad C C(c=-1) \quad$ curvature

$$
\begin{array}{lll}
a \propto t^{1 / 2} & a \propto t^{2 / 3} & a \propto e^{1 H t} \\
& H=\frac{a}{a}=\text { cons } & a \alpha t
\end{array}
$$

Some comments:

- A static Universe requires a negative CC. This was proposed by Einstein ('big blunder')
- Olbers paradox: night sky would be bright if the Universe was homogenous+static+infinite
- if the Universe was dominated by radiation or matter in the beginning, the age of the Universe is finite -> there was a very hot and dense state in the beginning -> big bang
- redshift:

$$
\begin{aligned}
& d s^{2}=0 \quad \text { for light } \quad=0 \text { for a } \\
& d t^{2}=a^{2}(t) \frac{1}{1-k r^{2}}\left(d r^{2}+r^{2} d \Omega^{2}\right) \\
& l_{1} \quad \int_{t_{i}}^{t_{e}} \frac{d t}{a}=\int_{r_{1}}^{r_{e}} \frac{d r}{\sqrt{1-k r^{2}}}=\delta\left(r_{e}, r_{i}\right)
\end{aligned}
$$

Consider the time it takes to travel from fixed r_{i} to r_{c} for subsequent light signals that are δt_{1}^{c} apart

$$
\begin{aligned}
\int_{t_{i}}^{t_{e}} \frac{d t}{a(t)} & =\int_{t_{i}+\delta t_{i}}^{t_{e}+\delta t_{e}} \frac{d t}{a(x)}=\text { cost. } \\
() \frac{\delta t_{e}}{a\left(t_{e}\right)} & \approx \frac{\delta t_{i}}{a\left(t_{i}\right)}
\end{aligned}
$$

So if there is a periodic signal, the observed signal differs in frequency from the emitted one by a factor

$$
\frac{a\left(t_{e}\right)}{a\left(t_{1}\right)}
$$

Stars that are far away are "redshifted"
There is a relationship between the distance of a star and its redshift and in leading order this relationship determines the Hubble parameter today

$$
H=\frac{\bar{a}}{a}
$$

There is often a misconception about this: This redshift is not equivalent to the Doppler-Effect:
 no Doppler, but redshift
thermodynamics

$$
\begin{gathered}
d u=-p d V+T d S \\
\rightarrow U(v, S) \quad\left(, p=\left.\frac{d U}{d v}\right|_{S} T=\left.\frac{\partial U}{\partial S}\right|_{V}\right.
\end{gathered}
$$

free energy:

$$
\begin{aligned}
F & =u-T S \rightarrow F(V, T) \\
d F & =-p d V-S d T \\
P & =-\left.\frac{\partial F}{\partial V}\right|_{T} \quad S=-\left.\frac{\partial F}{\partial t}\right|_{V} \\
F & \propto V \rightarrow F=-p V \\
S & =-\left.\frac{\partial F}{\partial T}\right|_{V}=\left.V \frac{\partial p}{\partial t}\right|_{V}=V S
\end{aligned}
$$

S entropy, s entropy density

$$
\begin{aligned}
V e=u & =F+T S=\forall\left(-p+T_{s}\right) \\
& {\left[e=T \frac{\partial \rho(t)}{\partial T} p\right.} \\
F & =u-\frac{\partial U}{\partial S} S \\
& \left(>\frac{\partial e}{\partial S} S=(p+e)\right.
\end{aligned}
$$

Compare this to energy-momentum conservation:

$$
\begin{gathered}
a \frac{\partial e}{\partial u}=-3(e+p)=-3 \frac{\partial e}{\partial s} s \\
\left(s a^{3}\right)=\text { const }=S
\end{gathered}
$$

All these relations can be explicitly shown using the expression for the energy momentum tensor, egg.

$$
\begin{aligned}
& P= \int \frac{d^{3} p}{\partial E} f\left(\frac{E}{T}\right) p^{2} \\
& T \frac{\partial p}{\partial T}=T \int \frac{d^{3} p}{2 z} f^{\prime}(E / T) p^{L} \cdot\left(-\frac{E}{T^{2}}\right) \\
& f^{\prime} \frac{\partial E}{\partial p T}=\partial_{p} f(E / T)
\end{aligned}
$$

+ partial integration

$$
\text { l) } \frac{\partial p}{\partial t} T=e+p
$$

