Gauge freedom
The Einstein equations

$$
G^{\mu c}=-8 \pi G T^{\mu c}
$$

$G^{\mu \sim}$	Einstein tensor
$G^{a v}$	Newton's constant
T^{∞}	energy-momentum tensor

are 10 equations and there are 10 degrees of freedom. However, the Einstein tensor fulfills the coservation law

$$
\nabla_{\mu} G^{\mu \nu}=-P_{\pi} G \nabla_{\mu} T^{\mu \nu}=0
$$

and hence the Einstein equations only encode 6 independent equations.

Hence the metric $g_{r y}$ is not unique. This is by no means surprising, since there are 4 coordinate transformations that leave the Einstein eq. invariant.

This is in full analogy to EM

$$
F_{\mu v}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

$$
\partial_{\mu} F^{\mu v}=-\gamma^{v}
$$

This encodes only $3=4-1$ equations since

$$
\partial \partial \mu F^{\mu}=0=-\partial_{\nu} \gamma^{c}
$$

-> 1 gauge degree of freedom

$$
A_{\mu}-1 A_{\mu}+\partial_{\mu} \alpha
$$

The problem can be removed by fixing the gauge first and then solving the equations of motion.

One common gauge choice is the harmonic gauge

$$
\Gamma^{\lambda} \equiv g^{\mu \nu} \Gamma_{\mu}^{\lambda}=0
$$

This gauge can always be reached because the constraint transforms under coordinate transformations as

$$
\begin{aligned}
\Gamma^{\prime \prime}=g^{1 \mu \nu} \Gamma_{\mu \nu}^{\prime \prime}= & \frac{\partial x^{\prime} \lambda}{\partial x_{j}} \Gamma_{\alpha \beta}^{\rho} g^{\alpha \beta} \\
& -g^{\rho \sigma} \frac{\partial^{2} x^{\prime \lambda}}{\partial x \rho \partial \times \sigma}
\end{aligned}
$$

For non-vanishing Γ^{λ} this can be solved for

$$
g^{\rho \sigma} \frac{\partial x^{\prime} \lambda}{\partial x^{\rho} \partial x^{\sigma}}=\frac{\partial x^{\prime \lambda}}{\partial x_{j}} \Gamma_{\alpha \beta} g^{\alpha \beta}
$$

() $\quad \Gamma^{\prime-1}=0$

Using the Christoffel symbols one finds

$$
\Gamma^{\lambda}=-\sqrt{g} \partial_{k}\left(\sqrt{g} g^{\lambda k}\right)
$$

and the harmonic gauge implies

$$
\partial_{x k}\left(v_{g} g^{x k}\right)=0
$$

Concerning the name:
A harmonic function is a function that fulfills

$$
\begin{aligned}
& \Gamma \varphi=0 \\
& \text { (, } g^{\lambda k} \frac{\partial^{2} \varphi}{\partial x^{-\lambda}} \partial x^{k}
\end{aligned}
$$

If you understand the coordinates as scalars, then one would get

$$
B x^{\mu}=0
$$

and the coordinates are harmonic functions.

Isotropic solutions
Consider an isotropic and static Ansatz for the metric

$$
\begin{aligned}
-d s^{2}=d \tau^{2} & =F(r) d t^{2}-2 E(r) d t d \vec{x} \cdot \vec{x} \\
& -D(r)(\vec{x} \cdot d \vec{x})^{2}-C(r) d \vec{x}^{2}
\end{aligned}
$$

or in spherical coordinates

$$
\begin{aligned}
d T^{2}= & F(r) d t^{2}-2 r E(r) d t d r \\
& -r^{2} D(r) d r^{2}-C(r) \\
& \times(d r^{2}+\underbrace{\left.r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \varphi^{2}\right)}_{r^{2} d \Omega^{2}}
\end{aligned}
$$

We are still free to change the coordinate system as long as it abides to isotropy, egg.

$$
t^{\prime}=t+\Phi(r)
$$

This can be used to eliminate the term $d t d r$

$$
d t^{\prime}=d t+d r \partial_{-} \Phi
$$

$$
\text { L) } \begin{aligned}
d \dot{r}^{2} & =F(r) d t^{\prime 2}-G(r) d r^{2} \\
& \left.-C(r)\left(d r^{2}+r^{2} d\right)^{2}\right)
\end{aligned}
$$

where $G(r)=r^{2}\left(D(r)+E^{2}(r) / F(r)\right.$
Redefining the radius

$$
\left(f^{\prime}=\partial r f\right)
$$

$$
\begin{aligned}
r=f(r) & -1 d r=d r^{\prime} f^{\prime} \\
d \tau^{2}=F(r) d t^{\prime 2}- & (f+c) f^{\prime 2} d r^{\prime 2} \\
& +C(r) f^{2} d \Omega^{2}
\end{aligned}
$$

for $\gamma^{\prime 2}=C(r) v^{2}$ one obtains the standard form

$$
d t^{2}=B(r) d t^{2}-A d r^{2}-r_{1}^{2} d \Omega l^{2}
$$

Alternatively, one can go to the isotropic form

$$
d \tau^{2}=A(r) d t^{\prime 2}-J(v)\left(d v^{2}+r^{2} \Omega \Omega^{2}\right)
$$

Finally, there is also the harmonic gauge:

$$
\begin{aligned}
d \tau^{2}= & J^{(r)} d t^{2}-\frac{r^{2}}{R^{2}} d \vec{X}^{2} \\
& -\left[\frac{A(r)}{R^{2} R^{\prime 2}}-\frac{r^{2}}{R^{4}}\right](d X \cdot X)^{2}
\end{aligned}
$$

with R fulfilling

$$
\frac{d}{d r}\left(r^{2} \sqrt{B / A} \frac{d R}{r}\right)=2 \sqrt{A B} R
$$

In the following we will use the standard form

$$
d T^{2}=B(r) d t^{2}-A(r) d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

The metric is diagonal and the inverse $g^{c c}$ is easily constructed. Also the Christoffel symbols and the Riemann tensor are straight forward. For Ricci tensor one finds

$$
\begin{aligned}
& R_{r r}=\frac{B^{\prime \prime}}{2 B}-\frac{1}{\varphi}\left(\frac{B^{\prime}}{B}\right)\left(\frac{A^{\prime}}{A}+\frac{B^{\prime}}{B}\right)-\frac{1}{r} \frac{A^{\prime}}{A} \\
& R_{\partial \theta}=-1+\frac{r}{2 A}\left(-\frac{A^{\prime}}{A}+\frac{B^{\prime}}{B}\right)+\frac{1}{A} \\
& R_{\varphi \varphi}=\sin ^{2} \theta R_{\theta \theta} \\
& R_{t t}=-\frac{B^{\prime \prime}}{2 A}+\frac{1}{\zeta}\left(\frac{B^{\prime}}{A}\right)\left(\frac{A^{\prime}}{A}+\frac{B^{\prime}}{B}\right)-\frac{1}{r}\left(\frac{B^{\prime}}{A}\right) \\
& R_{\mu v}=0 \text { for } \mu \neq v
\end{aligned}
$$

The relation $\quad R_{\varphi \varphi}=\sin ^{2} \theta R_{\partial \theta}$ is a consequence of isotropy.

Schwarzschild metric
The Schwarzschild solution assumes a mass in teh origin ($r=0$) and empty space otherwise.

$$
\begin{gathered}
R_{\mu r}=0 \\
Q_{r r}=R_{\partial t}=R_{t t}=0 \\
\frac{R_{r}}{A}+\frac{R_{t t}}{B}=-\frac{1}{r A}\left(\frac{A^{\prime}}{A}+\frac{B^{\prime}}{B}\right) \\
C \frac{A^{\prime}}{A}+\frac{B^{\prime}}{B}=0 \\
C, A \cdot B=\text { cost. }
\end{gathered}
$$

We want the metric to reduce to the flat metric at infinity

$$
\begin{aligned}
& \begin{array}{l}
A \xrightarrow{r \rightarrow \infty} \\
B \xrightarrow{r \rightarrow \infty} \\
H \\
A=\frac{1}{B}
\end{array}
\end{aligned}
$$

Using this in $R_{\theta \theta}$ one finds

$$
R_{\theta \theta}=-1+B^{\prime} r+3
$$

and

$$
R_{r r}=\frac{B^{\prime \prime}}{2 B}+\frac{B^{\prime}}{r B}=\frac{R_{\partial \theta}^{\prime}}{2_{r} B}
$$

So finally:

$$
\begin{aligned}
& R_{\theta \theta}=-1+\eta_{r}\left(B_{r}\right)=0 \\
& \partial B=r+\text { const } \\
& B=1+\frac{\text { con st }}{r}
\end{aligned}
$$

The constant can be fixed by the taking the Newtonian limit

$$
g_{00}=-(1+2 \phi)
$$

and $\Phi=-M 6 / r$
So the full metric reads

$$
\begin{aligned}
d r^{2}=[T & \left.-\frac{2 M G}{r}\right] d t^{2}-\left[1-\frac{2 M G}{r}\right]^{-1} d r^{2} \\
& -r^{2} d r^{2}
\end{aligned}
$$

