Gauge freedom

The Einstein equations
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&% Einstein tensor
& Newton's constant
Y energy-momentum tensor

are 10 equations and there are 10 degrees of
freedom. However, the Einstein tensor fulfills
the coservation law
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and hence the Einstein equations only encode
6 independent equations.

Hence the metric Is not unique. This is
by no means surpl‘?ETng, since there are

4 coordinate transformations that leave the
Einstein eq. invariant.

This is in full analogy to EM
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This encodes only 3 = 4 - 1 equations since
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-> 1 gauge degree of freedom
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The problem can be removed by fixing the

gauge first and then solving the equations
of motion.

One common gauge choice is the
harmonic gauge

’—-)\ = g/“’ 7'\/)/“/ = o

This gauge can always be reached
because the constraint transforms under
coordinate transformations as
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For non-vanishing [ " "this can be solved for
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Using the Christoffel symbols one finds
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and the harmonic gauge implies
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Concerning the name;

A harmonic function is a function that

fulfills
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If you understand the coordinates as
scalars, then one would get
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and the coordinates are harmonic functions.



Isotropic solutions

Consider an isotropic and static
Ansatz for the metric

— St St T ()l = 2LEC) L€ 3.7
- D) RR) = Cly) R
or in spherical coordinates
A= £ - - oy E() dtd,
~rX D¢) At - C G
« Colete ,tdO P f Lol Odp?)

\\/"
Yy

We are still free to change the coordinate
system as long as it abides to
isotropy, e.g.
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This can be used to eliminate the term J&A4
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Redefining the radius ((Lo¢)
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for o*. ¢t one obtains the standard form
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Alternatively, one can go to the isotropic form
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Finally, there is also the harmonic gauge:
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with R fulfilling
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In the following we will use the standard form
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The metric is diagonal and the inverse 6//0
IS easily constructed. Also the Christoffel
symbols and the Riemann tensor are

straight forward. For Ricci tensor one finds
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The relation K??t VN, Ko s

a consequence of isotropy.



Schwarzschild metric

The Schwarzschild solution assumes a mass

in teh origin (r = 0) and empty space

otherwise.
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We want the metric to reduce to the

flat metric at infinity




Using this in R@@ one finds
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So finally:
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The constant can be fixed by the
taking the Newtonian limit
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So the full metric reads
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