Manifolds

A manifold is a space (set of points) that is
homeomorphic to R

This means, there is a map of open
neighbourhoods in M to g«
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The map is called a chart.

Sometimes several charts are needed
to cover the full manifold.
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(homeomorphic -> bijective)



For our purpose, charts need to be compatible
in their overlap, meaning their relationship is
differentiable.
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The manifold is called differentiable if these
relationships between charts are.

On top, we will have a metric on the manifold
that can be used to measure distances and
volumes.
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Tangent spaces:

In every point of the manifold, a tangent space
can be constructed with the basis dy/.

The most general element in the tangent
space is then

V= V. det



Notice that in principle the tangent spaces
in different points are unrelated entitites
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Embeddings:

One way of constructing a "non-flat"
manifold is by embedding it into higher
dimensions:
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The 2D sphere is an embedding into
Euclidean 3D:
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And the sphere fulfills the constraint
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The induced metric can then be calculated
by eliminating one coordinate:
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Or in general, starting from a space with
coordinates

<t (pe=0.)

and a metric bg. Using a subspace that
IS parameteriée by some constraints
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one can construct the S=9
embedded metric as
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spherical coordinates:
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This fulfills the constraint:

|
Xz-tj Lo i--) =L
U

And the induced metric is:
4’( = _(__ Sih & oSy ’_(_’( —:--Z,‘ A S""‘(
L& A
dy  _ [ 5.0 s G = 4l osB sy
15 oA '
zt — L CDJ@ {’_‘i’ _
2O S —©
CQS‘L = (/'— Jet
) 40 dy
A )\
L A?
[ /A L
L) &j( = ( (g{b L
\
Notice that it is hard to see from the

metric if two manifolds are equal.




Parallel transport

Imagine we would like to
generalize the concept of a "constant field"
In GR. In flat spec the obvious choice would be
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One attempt to construct such a field

Is by following certain paths &)
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This would be called the parallel transport
of S along the path.

Does this depend on the path?
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In fact it does, when the space is curved!
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Notice that the scalar product of two
parallel transported fields does not
change along the path:
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-xample: S2 surface. What are the geodesics?

[geodesics are the parallel transported
velocities]

There is no unique way to define a field
using parallel transport in a curved space.



Let's mimick the proof of Gauss'/Stoke's
theorem: a loop can be split into many smaller
loops.

Consider now parallel transport along two
inifinitesimal paths Ak oA d,i( ;
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Now consider the difference between
A-B-D and A-C-D
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R measures the curvature of the space
and parallel transport is path-independent
for R=0.

R is called the Riemann tensor.



