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Abstract
A Bayesian method applied to the deconvolution of x-ray absorption spectra
is presented. It is shown that due to the ill-posedness of the deconvolution
problem, an infinitely large number of different Bayesian solutions
(absorption coefficients) exist. However, each solution is shown to give the
same Fourier transform (FT) of extended x-ray absorption fine-structure
(EXAFS), in a wide range of real space. Since it is the FT which is used for
analysis in most EXAFS applications, instrumental and lifetime broadening
can reliably be removed from raw EXAFS spectra. Several approaches for
the determination of the optimal Bayesian regularization parameter are
proposed. Bayesian deconvolution is compared with deconvolution which
uses the FT together with the optimal Wiener filtering. In addition, it is
shown that using a corresponding XPS spectrum as a deconvolution kernel,
one-electron absorptance can, in principle, be extracted from the total
absorptance, which gives the opportunity to use a more simple XAFS theory
for analysis of experimental spectra.

1. Introduction

The chief goal of extended x-ray absorption fine-structure
(EXAFS) spectroscopy is the determination of interatomic
distances, rms fluctuations in bond lengths etc. This is solved
mainly by means of fitting of parameterized theoretical curves
to experimental ones. However, there are obstacles for such
a direct comparison: theory limitations and systematic errors.
Among the latter are various broadening effects. First of all,
(i) the experimental broadening arising from the finite energy
selectivity of a monochromator and the finite angular size
of the x-ray beam. (ii) Even if the x-ray beam was strictly
monochromatic, its absorption by the electrons of a deep
atomic level gives rise to photoelectrons with the finite energy
dispersion, due to the finite natural width of this level and the
finite lifetime of the core hole. (iii) For x-ray energies far
above the absorption edge, the photoelectron creation process
and the process of its propagation occur at essentially different
time intervals. With other words, when just created, the
photoelectron ‘does not know’ where and how it will decay.
Therefore, the photoionization from the chosen atomic level
and excitation of the remaining system can be considered
as independent processes. Hence the total absorption cross
section (as a probability density of two independent random
processes) is given by the convolution of a one-electron cross

section and an excitation spectrum W(�E) which is the
probability density of the energy �E capture at the electron–
hole pair creation and is the quantity measured by x-ray
photoemission spectroscopy (XPS). For light elements, there
are examples of such deeply probing (more than 1.3 keV) and
lengthy XPS spectra (see figure 1, taken from [1]).

For all three cases, the measured absorption coefficient,
µm, is given by the convolution:

µm(E) = W ∗ µ ≡
∫
W(E − E′)µ(E′) dE′ (1)

in which the broadening profile W(�E) and the meaning
of the function µ depend on the considered problem.
These can be, correspondingly, the x-ray spectral density
after monochromatization and the cross section of ideally
monochromatic irradiation (more strictly, measured intensities
should be deconvolved separately, see below); the core-hole
Lorentzian function and the cross section with a stationary
initial level (of zero width); the excitation spectrum and a one-
electron cross section.

In modern EXAFS spectroscopy, it is common practice
to account for the broadening processes (i)–(iii) at the stage
of ab initio calculations by introducing into the one-electron
scattering potential the imaginary correlation part. Usually,
the choice of the correlation part is dictated by empiric
considerations and can be different for different systems.
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Figure 1. XPS spectra of MgO and MgF2 in the vicinity of the
Mg 1s peak. Two secondary structures, due to plasmon losses and to
double-electron KL2,3 excitations, are detected. The energy zero is
placed at the Mg K level (∼1300 eV).

Another approach to account for the broadening is to
solve the integral in equation (1) for the unknown µ. To find
some solution of this equation is not very difficult to do. The
simplest way is to use the theorem on the Fourier transform
(FT) of convolution, which states that the FT of the convolution
integral gives a simple product of the transformed functions.
However, the problem of deconvolution is an ill-posed one: it
has an unstable solution, or, in other words, it has an infinitely
large number of solutions specified by different realizations of
noise. Thus, the determination of an optimal, in some sense,
solution is required.

A number of papers have addressed the problem of
deconvolution, among them those concerning x-ray absorption
spectra. Loeffen et al [2] applied deconvolution with
the Lorentzian function, eliminating the core-hole lifetime
broadening. They used a fast FT combined with a Wiener
filter. The latter being determined from the noise level which,
in turn, is specified by the choice of the limiting FT frequency
above which the signal is supposed to be less than the noise.
The arbitrariness of such a choice gives rise to rather different
deconvolved spectra, which although in [2] was not discussed.

Recently, Filipponi [3] also using the FT for the
deconvolution problem with a Lorentzian function, proposed
an idea of the decomposition of an experimental spectrum into
the sum of a linear contribution, a special analytic function
representing the edge, and the oscillating part. For the
Lorentzian broadening function, the deconvolution for the first
two contributions is found analytically; for the latter one,
numerically. The advance of such a decomposition is that,
now, the FT of the oscillating part is not dominated by very
strong signal of the low-frequency component. Therefore
the combination of the forward and backward FTs gives less
numerical errors. However, this method is solely suitable for an
analytically given broadening function. In addition, in [3] the
choice of the filter function (Gaussian) and its parameterization
remained vague. Therefore, the issue on the uniqueness or
optimality of the found solution was left open.

In the paper by Babanov et al [4], a modified Tikhonov
regularization method was implemented to the core-hole
lifetime deconvolution problem. The idea of the modification

was to replace some exact transformation matrix to a well-
defined matrix with a voluntarily chosen condition number,
implicitly specifying the smoothness of solution. The
optimality of such a choice was not discussed.

In all three papers, [2–4], the fact that the core-hole
lifetime broadening occurs after the core-hole creation only,
i.e. at overcoming the Fermi energy EF , was not taken
into account. In those papers, the whole energy range of
spectra, including the pre-edge region, was deconvolved with
a Lorentzian function.

In early work [5], the statistical approach was proposed
for the solution of ill-posed problems. Following that paper,
we shall consider in the present paper the deconvolution
problem in the framework of the Bayesian method. Its
detailed description was given elsewhere [6]. Since
the parameterization is naturally involved in the Bayesian
method, a principle possibility exists to choose the optimal
deconvolution. The problem of such a choice will be
scrutinized in this study, which is relevant, by the way, to
any spectroscopy. This problem will be shown to be absent
for EXAFS spectroscopy because despite the fact that EXAFS
spectra themselves do depend on the regularization parameter,
their FT does not, in the range of real space used for the
analysis. In section 2 we discuss the choice of the optimal
deconvolution for a Gaussian model broadening function, in
section 3 compare the results of the Bayesian approach with
the results of the FT combined with Wiener filtering and, in
section 4, we utilize the deconvolution to an experimental
spectrum in order to eliminate the aforementioned broadening
processes.

2. The choice of optimal Bayesian deconvolution

First of all, the deconvolution problem must be shown to have
an infinitely large number of solutions. In the present paper, we
use as an example the XAFS spectrum of Nd1.85Ce0.15CuO4−δ
at the Cu K-edge, collected at 8 K in transmission mode
at LURE on beamline D-21. A Si(111) double-crystal
monochromator was used, and harmonics were rejected using
a plain mirror; the energy step was ∼2 eV, the total amount
of points was 826 (from 8850 eV to 10 500 eV), each of them
recorded with integration time of 10 s.

Let us take, first, the model broadening function of a
simple Gaussian form: W(E) = C exp(−E2/2�2), where
C normalizes W to unity, � is chosen to be equal to 4 eV.
In [6], the method for how to construct a regularized solution
of the convolution equation in the framework of the Bayesian
approach was described. For that one needs to find eigenvalues
and eigenvectors of a special symmetric (N × N ) matrix
determined by the experimental spectrum; N is the number of
experimental points. Using that approach, let us find a solution,
µ, of equation (1) for an arbitrary regularization parameter α
and perform then back convolution W ∗ µ, thereby making a
solution check. The obtained µ̂m = W ∗ µ, ideally, must
coincide with µm. We introduce the characteristics of the
solution quality, given by the normalized difference of these
curves:

R =
N∑
i=1

(µmi − µ̂mi)2
/ N∑

i=1

µ2
mi. (2)
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Figure 2. (Top) The quality of the deconvolution R against the
regularization parameter α (full curve); the dashed curve, denote the
lines—signal-to-noise ratio before and after deconvolution.
(Bottom) The two peaks denote the posterior density functions
p(α|d) (left) and p(α|d, σ ) (right) for the regularization parameter
α. The straight line denotes the determinant of the Bayesian matrix
as a function of α.

Figure 2 shows the dependence R on α. For all α � 1, the
quality of the derived solutions is practically the same; denote
them as true solutions. This fact is a clear manifestation of
the ill-posedness of the problem: there is no unique solution.
Unfortunately, almost all published works concerning the
problem of the deconvolution of XAFS spectra do not disclose
this problem. Then, how to chose an optimal solution? It
turns out that, for the purposes of EXAFS spectroscopy (and
only for EXAFS, not for x-ray absorption near-edge structure
(XANES)), there is no need to find an optimal solution and any
true solution is suitable due for the following observation. Let
us find, for any true solutionµ, the EXAFS functionχ(k)·kw in
a conventional way, where k is the photoelectron wavenumber,
and calculate its FT, χ(r). In figure 3, we show the EXAFS
functions obtained after the Bayesian deconvolution with
α = 1 and α = 0.01, and their corresponding FTs. Despite
the fact that the EXAFS spectra themselves do depend on α,
their FTs practically do not. Thus if one uses χ(r) for fitting,
(in our example, up to rmax = 8 Å) or a Fourier filtered χ(k),
the search for the optimal α value is no longer relevant.

Nevertheless, below we propose several approaches to the
determination of the optimal α value, for instance for XANES
spectroscopy needs. The remaining part of this section may
be skipped by those readers who are not very familiar with
Bayesian methods.

(1) For the regularization parameter α itself, one can
introduce the posterior probability density function [5, 6] and
choose α with a maximum probability density. This can
be done either by using the known standard deviation σ
of the noise of the absorption coefficient (for our spectrum
σ = 9 × 10−4, as determined from the FT, following [7]), or by
using the most probable value of noise. The definitions of the
corresponding conditional probability densities given the data,
p(α|d, σ ) and p(α|d), can be found elsewhere [6]. For our
example spectrum and the chosen model broadening function,
these probability densities are drawn in figure 2; their most
probable values are found to be α1σ = 0.044 and α1 = 0.021.
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Figure 3. (Top) χ · k2 obtained without deconvolution and after that
with α = 1 and α = 0.01. (Middle) The envelope of the initial χ
(not kw weighted) and rms deviations of the deconvolved values
(dots). (Bottom) The absolute values of the Fourier transform (the
dashed and the dotted curves practically merge).

(2) The optimal regularization can be determined from the
consideration of the signal-to-noise ratio S/N . The Shannon–
Hartley theorem states that Imax = B ln (1 + S/N), where Imax
is the maximum information rate and B is the bandwidth. The
authors of [2] suggest that deconvolution is a mathematical
operation that conserves information. Therefore, from the
theorem it follows that one has to pay for an increase in
bandwidth, resulting from deconvolution, via a reduction
in the S/N ratio. The hypothesis that Imax is conserved
is quite questionable, since, for deconvolution, one should
introduce additional independent information on the profile
of broadening. What quantity is conserved in deconvolution
is hard to evaluate. In this study, however, for an optimal α-
value we request the conservation of the S/N ratio. Define
S/N as the ratio of mean values of the EXAFS FT spectrum
over two regions, r < 15 Å and 15 Å < r < 25 Å.
The regularization parameter at which the S/N is conserved
is denoted in figure 2 as α2 = 5.54. The signal-to-noise
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ratio can be defined in a different way. Since the Bayesian
methods work in terms of posterior density functions, for each
experimental point one can find not only the mean deconvolved
value but also the standard deviation δµdeconv [6]. From the
latter one finds δχ = δµdeconv/µ0, where µ0 is the atomic-
like absorption coefficient constructed at the stage of EXAFS
function extraction. It is reasonable to compare δχ values
with the envelope of the EXAFS spectrum (figure 3, middle).
The smaller α is, the more the noise (δχ ) dominates over the
signal (the envelope) in the extended part of the spectrum.
The regularization parameter at which the noise and the signal
match is the optimal one, α2.

(3) For the Bayesian deconvolution it is necessary to find
eigenvalues and eigenvectors of a special symmetric matrix g.
It turns out that the determinant of this matrix, det(g), varies
with α over hundreds of orders of magnitude. At small α’s
the matrix is poorly defined, large α’s yield very large det(g)
(figure 2). Both cases give large numerical errors because of
the ratios of very small or very large values in calculations.
As an optimal parameter, we choose α3 = 1.41 at which
det(g) ∼ 1.

The cases (1) and (2) require one to determine the noise
level, which demands additional variables (for instance, the
limiting frequencies of FT). Case (3) does not explicitly
concern the noise. In addition, because the dependence of
lg[det(g)] onα appears to be linear, it is easy to find the optimal
parameter. Then, case (3) is the most preferred from a practical
point of view. Below, for deconvolution of the real broadening
processes we use the optimal parameter α3.

3. The comparison with Wiener filtering

It is of certain interest to compare the Bayesian method
of deconvolution with the widely known method combining
optimal Wiener filtering and the convolution theorem. Above
we have used the FT, as applied to the EXAFS function
χ(k) · kw, with the conjugate variables k and 2r adopted in
EXAFS spectroscopy. Now we apply the FT toµm(E) and use
the conjugate variables E and E−1 (denote as τ ). According
to the convolution theorem, µm(τ) = W(τ) · µ(τ), where for
a Gaussian broadening function W(τ) = exp(−�2τ 2/2). A
simple back FT of the ratioµm(τ)/W(τ)would give the sought
solution µ(E), but it could be extremely noisy. Therefore,
µm(τ) at large τ has to be damped. Figure 4 shows the modulus
of the FT of the measured spectrum and those of the Bayesian
deconvolved spectra with different α values. In the bottom
part of figure 4, the corresponding ratios |FTµ|/|FTµm|, i.e.
the filters transforming µm(τ) into µ(τ), are shown. As seen,
the Bayesian deconvolution performs the effective damping of
the high-τ signal, with the limiting frequency τmax depending
on α.

The optimal, in the least-squares sense, Wiener filter is
expressed as [8]: )(τ) = (1 + |n(τ)|2/|µm(τ)|2)−1, where
|n(τ)|2 is the power spectrum of the noise replaced here by
the mean value of |µ(τ)|2 over the range τ > 0.4 eV−1,
equal to 0.01. As seen in figure 4, the effective Wiener filter
)/W(τ) transforming µm(τ) to µ(τ) is close to the effective
filter of the Bayesian deconvolution with α = 1 ≈ α3. Thus,
the Bayesian deconvolution method and the combined usage
of optimal Wiener filtering and the convolution theorem are
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Figure 4. (Top) Modulus of the FT of initial µm and deconvolved µ
at different α. (Bottom) Filters transforming µm(τ) into µ(τ)
obtained after a Bayesian deconvolution (thin full curves), after a
deconvolution based on the FT (broken curve) and after a
deconvolution based on the combination of the FT and Wiener
filtering (thick full curve).

of certain resemblance. Notice, however, that here, for the
determination of the Wiener filter, the limiting frequency for
the estimation of the noise power spectrum was chosen rather
arbitrarily.

As a conclusion of this section, it should be noticed
that apart from the possibility of the determination of
the deconvolution errors and the possibility of the optimal
regularization parameter choice, the Bayesian deconvolution
has the advantage to take into account a priori information
on the smoothness and shape of solution (see details in
[6]). In addition, in the Bayesian deconvolution method the
broadening functionW(E −E′) can be of more general form
W(E − E′, E), i.e. the broadening profile may change along
the deconvolved curve. This will be very useful in this study:
(i) the instrumental broadening is changing along a spectrum
because monochromator energy resolution depends noticeably
on the angular position and, hence, on the energy of the output
x-ray beam; (ii) the lifetime broadening is incipient atE > EF ,
and the broadening function is a δ-function before EF and
a Lorentzian function after; (iii) the secondary multielectron
peaks become non-zero only after overcoming a corresponding
excitation energy.

4. Applications of deconvolution

We have seen that the Bayesian method proves to be efficient
for deconvolution of EXAFS spectra, and the choice of the
regularization parameter appears to be irrelevant. Now we
perform the deconvolution of various types of broadening. For
that we should specify the corresponding broadening functions
W(E − E′, E).
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4.1. Instrumental broadening

The monochromator resolution is determined by the rocking
curve width δθB and by the vertical angular beam size
δθ⊥. For the Si(111) flat crystal, the rocking curve width
is δθB = 32.4 µrad (FWHM) at E = 9 keV [9]. The beam
divergence (LURE, D-21) δθ⊥ is 150 µrad. Strictly speaking,
the resulting spectral distribution is given by the convolution
of the rocking curve and the angular beam profile. But since
δθB  δθ⊥, the energy selectivity is determined by δθ⊥;
namely δE/E = δθ⊥ cot θB = δθ⊥

√
(2Ed/ch)2 − 1, where

θB is the Bragg angle and d is the Bragg plane spacing.
Modelling the spectral distribution by a Gaussian function,
one obtains:

Winstr (E − E′, E) = C exp

[
− (E − E′)2

2σ 2
⊥(E)

]

σ⊥(E) = δE(E)

2
√

2 ln 2

where the normalization constantC must be calculated at each
E value. For our sample spectrum, σ⊥(8850 eV) = 2.46 eV
and σ⊥(10 500 eV) = 3.49 eV.

4.2. Lifetime broadening

At overcoming the absorption edge threshold, the lifetime
broadening is described by a Lorentzian function and by a
δ-function otherwise:

Wlif etime(E − E′, E) =




�Kπ
−1[(E − E′)2 + �2

K ]−1

for E � EF
δ(E − E′)

for E < EF

where �K = 0.775 eV is half as many as the width of the
Cu K-level, 1.55 eV (FWHM) [10].

4.3. Multielectron broadening

There are certain difficulties in measuring XPS spectra
near (and deeper than) the deepest atomic levels. First,
monochromatic x-ray sources of high energy are required.
Second, for long enough spectra (∼100 eV), a photoelectron
analyser with a broad energy window and long integration time
is necessary. Unfortunately, in the lack of experimental XPS
spectra for cuprates near the Cu 1s level, one can only use
a model representation of the broadening function. For that,
the estimations of position, height and width of the secondary
KM23 excitation are taken from [11]: EKM23 − EK = 85 eV;
IKM23/IK = 0.03; 2�KM23 = 3 eV. Finally, for the broadening
function, one has

Wmulti−e(E − E′, E) ∝ IKWlif etime(E − E′, E)

+




IKM23�KM23

(E − E′ − EKM23)
2 + �2

KM23

for E � EKM23

0 for E < EKM23 .

Here, we should make an additional remark concerning the
instrumental broadening. The measured quantity in a XAFS
experiment is not an absorption coefficient itself but the
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Figure 5. (Top) Modulus of the FT of various EXAFS spectra:
extracted from the measured absorptance; obtained from the
instrumentally deconvolved absorptance, the latter was then
deconvolved with the Lorentzian broadening function and with the
multielectron broadening function. (Bottom) The path-dependent
ratios of amplitudes of initial and deconvolved EXAFS spectra,
obtained as a result of the lifetime (full curves) and multielectron
(broken curves) deconvolution. First two scattering paths, Cu–O (I )
and Cu–Nd (II ), are considered.

intensities of the x-ray beam before, I0, and after, I , the sample,
and the absorption coefficient is calculated as µm = ln(I0/I).
Therefore, the instrumental deconvolution should be applied
to the intensities, not to µm. However, as I0(E) is a very slow
varying function, the difference between these two differently
deconvolved µ’s is small: the normalized difference of the
form of equation (2) is less than 2 × 10−6. Nevertheless, in
this study, the instrumental deconvolution is applied separately
to the intensities I0 and I , and then the instrumentally
deconvolved µinstr is calculated.

Further, having µinstr as an initial spectrum, the
lifetime broadening deconvolution is performed. The
multielectron broadening is deconvolved starting also from
µinstr . So, the following deconvolutions are carried out:
µm → µinstr ⇒ µlif etime

µmulti−e .

5. Results and discussion

Now, for the deconvolved µ’s, the EXAFS functions are
extracted in a conventional way and their FTs are calculated
(see figure 5). Just as for the model broadening function
in section 2, the deconvolution leads to the increase of the
EXAFS magnitude. It turns out that the deconvolution has
weak influence on the first FT peak originating from the
shortest scattering path. Clearly, the EXAFS oscillations
corresponding to this contribution are essentially wider than
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the broadening function W (for these, W is ‘almost a
δ-function’, and in equation (1) µ becomes equal to µm).
EXAFS oscillations, being of approximately constant period
in k-space, become quadratically wider in E-space in the
extended part of a spectrum. Thus, it is in the extended part,
where the deconvolved µ differs less from the initial µm. This
expectation is met, as illustrated in figure 5 (bottom), where the
path-dependent changes in EXAFS amplitude after the lifetime
and multielectron deconvolution are drawn.

In modern XAFS theory, various broadening effects are
taken into account by introducing the imaginary part to
the self-energy [12]. For instance, the lifetime Lorentzian
broadening of the EXAFS spectrum with a half-width �
is similar to the effect of the imaginary part of the self-
energy with Im4 = �. The experimental broadening is
also accounted for by adding an appropriate value to Im4.
However, since only transitions to unoccupied levels above
EF are allowed, in ab initio calculations, this ‘experimental’
broadening is incipient only after the edge, despite the fact
that real experimental broadening is present along the whole
spectrum. Extrinsic losses, which refer to the photoelectron
propagation, are also described in terms of the imaginary
part of the self-energy operator. Thus, the complexity of
the scattering potential is widely used, although it is known
that the factorization of µ into atomic and fine structure parts,
µ = µ0(1+χ), is strictly valid only for real potentials [12, 13].

Intrinsic losses, which refer to excitations in response
to creation of the core hole, are usually accounted for by
a constant many-body amplitude-reduction factor S2

0 , which
is either treated as a fitting parameter or estimated from
the relaxation of the core hole as the many-electron overlap
integral. More precisely, the amplitude reduction is energy and
path dependent (as in figure 5), and is given by a convolution-
type equation, where the excitation spectrum is represented
by a sum of weighted δ-functions [12]. In the present work,
the model excitation spectrum and the lifetime broadening
are combined together to give the multielectron broadening
function. The effect of the introduction of a secondary
excitation in addition to the main absorption channel is seen
in figure 5. The corresponding overall amplitude reduction
is approximately equal to the relative weight of secondary
excitations. In addition, there are some phase shifts between
the initial spectrum and the deconvolved ones. But these shifts
are found to be quite small: less than 0.2 rad at k < 4 Å and
less than 0.1 rad at k > 4 Å.

Being deconvolved with the multielectron broadening
function, an EXAFS spectrum should be free from intrinsic
losses and should have a zero-width initial level. If one had
a real XPS spectrum measured near the Cu 1s level, the XPS
spectral features representing the extrinsic losses can also be
taken into account via deconvolution. In this case a pure
one-electron absorptance could be experimentally obtained,
and pure one-electron calculations could be made with real,
not complex, scattering potentials. However, there are some
reservations on the equivalency of the photoelectron losses in
bulk material (as EXAFS sees) and in near-surface layers (as
XPS sees). In addition, near the absorption edge, where the
photoelectron kinetic energy is low, the core-hole relaxation
processes are of certain importance for the photoelectron
propagation. Here we do not consider the validity of neglecting
this effect (for a review see [12]).

6. Conclusions

To take into account the many-electron effects, there exist,
in principle, two approaches: (a) to include into a one-
electron theory relevant amendments or (b) to extract a one-
electron absorptance from the total one, and to use then a
pure one-electron theory. The first (and traditional) approach
invokes semi-empirical rules (but no ab initio calculations)
to construct the exchange correlation part of the scattering
potential, with the empiricism being based on the comparison
with experimental spectra already broadened. In the present
paper the principle for the second approach is discussed,
using the solution of the integral convolution equation, the
kernel in which is the excitation spectrum measured thanks
to XPS spectroscopy. Owing to the specific way of the
structural information extraction from EXAFS spectra, one
uses an isolated signal in r-space or a filtered signal in k-
space. Then there is no violation against the fact that the
integral convolution equation is an ill-posed problem, because
any one from an infinitely large number of solutions of this
equation is appropriate since it gives the same EXAFS FT
spectra.

Because of some intrinsic technical difficulties, XPS
measurements near deep core levels are challenging.
Therefore, the desirable pure one-electron absorptance cannot
be experimentally determined at present. Nevertheless,
accurate instrumental deconvolution and deconvolution of the
lifetime broadening are allowed. These procedures make the
comparison between calculated and experimental spectra more
immediate and the final results of EXAFS spectroscopy more
reliable.

All the stages of EXAFS spectra processing, including
those described here, are available in the freeware Windows-
based program VIPER [14].
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