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Abstract
We propose two methods for obtaining the atomic-like background for the
x-ray absorption fine structure (XAFS): the methods of smoothing spline
and of Bayesian smoothing. Both are capable of using the prior information,
calculated or experimental, about the background. The XAFS signals
obtained by these techniques are shown to be significantly corrected in
comparison with standard methods. The method of Bayesian smoothing is
the only method that gives the errors of approximation of the atomic-like
background by an artificial smooth function. These errors are shown to be
the main source of the uncertainty of the XAFS function.

1. Introduction

The x-ray absorption fine structure (XAFS),χ , is determined in
E- or k-space (k = √

2me(E − E0)/h̄—E0 being the energy
of the corresponding absorption edge) as [1]:

χ = (µ− µ0)/µ0 (1)

where µ = µexp − µb is the measured absorption minus
pre-edge background (the latter is usually approximated by
a Victoreen law), and µ0 is the ‘atomic’ absorption due to
electrons of considered atomic level (post-edge background).
Since the electronic state of an embedded atom is, in general,
different from its state in gaseous phase, µ0 is not the same
as for an isolated atom and cannot be found experimentally.
Therefore, a demand arises for an artificial construction of µ0.
This is the most difficult procedure in the extraction of XAFS
from the measured absorption because one cannot definitely
distinguish the environmental-born part of absorption from
the atomic-like one. Most methods for determination of the
post-edge background are based on the assumption of its
smoothness, and the only criterion for its validity is the absence
of low-frequency structure in χ . From the critical review
of existing post-edge background methods that we make in
this paper, it follows that their main disadvantages are: (i)
instability and ambiguity near the absorption edge; and (ii)
inability to take into account independent information about
µ0, calculated or measured. In principle, modern methods
for theoretical XAFS calculations (e.g. FEFF8 [2]) are able
to calculate µ0. However, these calculations may be not
accurate at high energies and therefore cannot be used for direct
background removal.

In this paper, we present methods for extracting the post-
edge background from experimental data with the use of

calculated µ0. Besides the significant influence on the XAFS
signal, especially first coordination sphere, the use of the prior
information raises the accuracy of the sought µ0 near the
absorption edge.

Estimation of the uncertainties of µ0 construction has
always been an unresolvable problem for any method. The
problem is much deeper than the simple determination of the
numerical errors of µ0 drawing; the problem is to find out
how much the artificially constructed µ0 differs or can differ
from the real atomic-like absorption. The standard practice
in XAFS analysis is to ignore these uncertainties. However,
it is well known that all sources of errors affect the accuracy
of the final conclusions for the structural information. When
this information happens to conflict with the data of other
experimental techniques, often vague ‘systematic errors’ are
mentioned. While many sources of systematic errors are
well understood—(i) acquisition-related ones are removed
by proper sample preparation or can be calculated and (ii)
imperfection of ab initio references can be accounted for in
the fitting procedure [3]—the errors of approximation of µ0

have not been discussed yet and not even defined.
We believe that the errors of µ0, always neglected

because undefined, contribute essentially to systematic errors.
In this paper, we also show how this contribution can be
determined. For this purpose, we propose the method of
Bayesian smoothing that gives the errors within which lie
all functions of specified smoothness and, among them, the
artificial Bayesian µ0 and the real atomic-like absorptance.

2. Review of post-edge background removal methods

A rich variety of computer programs for XAFS spectra
processing are collected on the web site of the International
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XAFS Society [4]. The vast majority of these use, as an
approximation for the atomic-like absorption, a smoothing
spline or more general piecewise-polynomial representation.
For example, by the method of [5], the construction of
µ0 includes several preliminary stages: µ0 is approximated
by a low-degree polynomial; through obtained χ(k)kw, an
additional µI

0 is drawn again as a low-degree polynomial and
subtracted; a smoothing spline then approximates one more
additional µII

0 . The sum of all µ0s gives the total atomic-like
background. From our experience, we know that the spline
function is very unstable with respect to the small variations
of the kmin, the left end of the XAFS range, and near kmin

the spline can bend rapidly. Although the preliminary stages
with several auxiliary parameters (degrees of polynomials and
kw-weighting) can give a corrected χ , they cannot make the
spline be stable with respect to kmin.

In [6], an iterative approach to ‘atomic background’
removal was developed. First, splines or low-order
polynomials are used to obtain a rough estimate of the
background; this alone is enough to have a reliable χ at
k > 5–6 Å−1. Over that range, the theoretical χth is fitted
to the χ obtained. The resulting fit parameters are then
used to generate χth(k) that extends down to low k. This
function is transformed back into E-space and µ0 is obtained
asµ0 = µ/(χth+1) that need be a little smoothed or fitted by an
additional spline. Since the logic of reasoning was inversed:
not ‘to find µ0 for χ ’, but ‘to find χ for µ0’, the method is
suited for the quest of peculiarities on the µ0 curve, not for
structural XAFS researches. In addition, the accuracy of the
model parameters appears to be unknown in principle: all that
is not described by the model is included into µ0.

For the determination of the background absorption
µ0, Boland et al [7] considered the damping of the
XAFS amplitude resulting from the measurements with low
resolution (with a large slit width). The superimposition of
two spectra measured with different energy resolution gives
the intersection points, the part of which belong to µ0. Then,
through the obtained nodal points, a spline is drawn. As Boland
et al [7] noted, the measurements of the spectra with worsened
resolution are not necessary: the spectra could be damped by
the convolution with a ‘rocking curve’, approximated by a
Gaussian function. Of course, the method works correctly
only with a small variation of the Gaussian curve width since
for the large width not only the XAFS amplitude is damped but
the very edge is washed out. Because of this, only the extended
part of a spectrum could be reliably determined.

The damping of the XAFS amplitude can be due to other
reasons. For instance, as was pointed out in [7], the nodal
points may be obtained from the variable-temperature study.
This idea was realized in [8] and relies on the assumption
that, while the XAFS is temperature dependent, the atomic-
like background is not. But, for all that, it is important that
the phase difference between XAFS of different temperatures
was negligible, which is true only for low wavenumbers.
Furthermore, the method is suitable only for some particular
cases (to say nothing of the need for a measured temperature
series of spectra). In [8], it was demonstrated for the x-ray
absorption data for the L3 edge of solid Pb. In those spectra,
the first crossing of µ and µ0 occurs already at ∼15 eV above
the edge. In our sample spectra, considered below, the first

crossing occurs only at ∼30 eV, which allows one to find at
most 2–3 points, the first of these being situated at k � 2.5 Å−1.

Newville et al [9] suggested the subtraction of a spline
that best eliminates the nonstructural, low-r , portion of χ(r),
the Fourier transform of χ(k)kw. The spline is drawn through
knots, equally spaced in k-space. The ordinates of these are
varied to minimize χ(r) or |χ(r) − χst(r)| in the chosen
low-r region 0 � r � r0, where χst is a ‘standard’ χ ,
calculated or experimental. In [9], it was asserted that one
need know the ‘standard’ χst merely approximately since it
is used only to get an estimate of the leakage from the first
shell to the region minimized. Having omitted the question
of the accuracy of found knots, Newville et al [9] made a
fine comparison between several theoretical models for χ
calculations. However, it is not evident that the knot positions
are uniquely determined by this procedure. Moreover, when
the number of knots is close toNmax = 2r0�k/π , where�k is
the k range of useful data, correlations between knot positions
become very high. We have used this method many times and
have found that the pair-correlation coefficients between first
knots can be as high as 0.997, so the variation of one of the
knots can be compensated by the movement of another one.
Fortunately, this ambiguity is not pronounced in r-space, and
χ(r) can be regarded as reliable.

One more approach to the problem of µ0 determination
was reported in [10]. It is based on the simple identity that
relates the Fourier transform (FT) of some function with the
FT of its nth derivative:

FT[f (n)(k)] = (2ir)nFT[f (k)] (2)

where the conjugate variables are k and 2r . Assuming that
for higher derivatives µ(n)0 � µ(n), one obtains FT[µ(n)] ≈
(2ir)nFT[χµ0(k)]; see figure 1 for our sample spectrum
described below. The only way to obtain χ from this formula
is to neglect the k-dependence of µ0 and normalize χ to the
absorptance step at the edge. In [10], the low-r part (which in
our example is 0 � r � 1.1) was cut off, and then the back
FT was done. As a result, one obtains the fine structure and,
having subtracted it from µ, the atomic-like background, on
which some peculiarities due to multi-electron excitations can
be distinguished. Like the method of [6], this method is suited
for the quest of peculiarities on the µ0 curve, not for structural
XAFS researches, because of the evident distortion of the
first peak on the FT by the contribution from the atomic-like
background. To illustrate this assertion, in figure 1 we show
the FT of the second derivative of the µ0(k) that was found by
the present method. As seen, this contribution is not as small
in the vicinity of the first structural peak at 1 � r � 2 Å.

If the electronic states of absorbing atoms in gaseous
phase and in the compound of interest may be considered as
equivalent, µ0 can be set equal to the measured absorption in
gas, as was done in [11] for solid, liquid and gaseous Kr. Some
differences in energy positions and relative weights of double-
electron excitation channels were taken into account by a
model using simple empirical functions which were transferred
then to the spectra of liquid and solid Kr.

3. Smoothing spline method

Owing to fast algorithm and easy program realization, the
approximation of µ0 by the smoothing spline has become
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Figure 1. On the method of [10]. The solid curve is nearly
proportional to the |FT[χ(k) · k2]|. The dotted curve is the
contribution from the atomic-like absorption.

widespread. Let N + 1 experimental values of µi be defined
on the mesh Ei . The smoothing spline µ0 minimizes the
functional

J (µ0, µ) =
∫ Emax

Emin

[
µ′′

0(E)
]2

dE +
1

α

N∑
i=0

[
µ0i − µi

]2
. (3)

The smoothing parameter (or regularizer) α is the measure
of the compromise between the smoothness of µ0 and its
deviation from µ. At α = 0, the smoothing spline exactly
coincides with µ, at α → ∞ it degenerates to µ0 =
const. The optimal regularizer should lead to µ0 containing
only low-frequency oscillations and, hence, to χ containing
only structural oscillations. We shall consider below the
formulation of a criterion for optimal α.

First, we address another problem of how to take
into account the prior information about µ0. Let µ0 be
approximately known in advance as µ∗

0, being measured in
gaseous phase or calculated. In general, µ∗

0 cannot be directly
subtracted from µ. Measured spectra for different samples
have different rates of decrease ofµ, and the superimposition of
one spectrum on another should be done after relevant shifting
and/or scaling. If the condensed sample has holes, which is
frequently the case, such a simple correction fails. On the
other hand, the calculated µ0 (we used the FEFF8.10 code) may
give errors. Full multiple scattering results are not accurate
at high energies; the multiple scattering expansion sometimes
does not converge well in the XANES energy region.

Nevertheless, the prior information can be used. For that
we should slightly modify the smoothing spline method. Now
we will tend the second derivative of the sought µ0(E) not to
zero (at the specified deviation ofµ0 fromµ) but to the second
derivative of µ∗

0(E). The sought µ0(E) now minimizes the
functional

J ∗(µ0, µ)=
∫ Emax

Emin

[
µ′′

0(E)−µ∗
0
′′
(E)

]2
dE+

1

α

N+1∑
i=0

[
µ0i−µi

]2
.

(4)
As seen, in fact there is no need to know µ∗

0 itself, its second
derivative is sufficient. The explicit presence of µ∗

0 in the
following formulae should be taken as a consequence of the

technical trick applied; at first, µ∗
0 is subtracted from the data,

then it is added to the found spline.
Introducing µ̃0i = µ0i − µ∗

0 i , one obtains:

J ∗(µ0, µ)=
∫ Emax

Emin

[
µ̃′′

0(E)
]2

dE +
1

α

N+1∑
i=0

[
µ̃0i − (µi−µ∗

0i )
]2

= J (µ̃0, µi − µ∗
0i

)
. (5)

Thus, the problem is reduced to the preceding one in which,
instead of initial data µ, the difference µ − µ∗

0 appears.
Then, µ0 is found from the smooth µ̃0 as µ0 = µ̃0 + µ∗

0.
Figure 2 shows the example of the atomic-like absorption
approximation by the smoothing spline with and without
the use of prior function. The latter was calculated by the
FEFF8.10 program using self-consistent potential calculations
with the ground-state exchange correlation potential, full
multiple scattering approach and a 57-atom cluster of simple
cubic perovskite structure with the lattice parameter 4.275 Å.
We used the fine radial grid for calculations (rgrid = 0.01),
otherwise at high energies the background curves upward. The
calculated background was then multiplied by a constant factor
to match the step height. Our calculated µ0 has less of a slope
at high energies than the measured absorption (see the dotted
curve in figure 2(a)). Additional features due to possible multi-
electron excitation channels should be added to the µ∗

0(E),
if known. However, we do not intend to discuss here the
validity of the prior function, we just demonstrate how the
prior knowledge can be used for XAFS post-edge background
removal. As seen, the use of µ∗

0(E) has led to considerable
correction of the first shell signal.

Incidentally, we have solved another problem. It is well
known that a spline is unstable with respect to the small
variations of input parameters: number of nodes, nodal values
of the processed function and limits of the integral. In our
case, the spline is most sensitive to Emin due to the fast growth
of µ in the edge. It turns out that the use of prior function
has reduced the influence of the left hanging end: now it is no
longer hanging but constrained by the prior function. Thus,
the preliminary stages for smoothing spline, mentioned in the
previous section, have become redundant.

Let us now define the criterion for the determination of
the smoothing parameter. An attempt to solve the problem
was made in [12], where the requirementHR −HN � 0.05HM

was proposed;HR is the average value of the weighted Fourier
transform magnitude between 0–0.25 Å, HM is the maximum
value of the transform magnitude between 1–5 Å and HN is
the average value of the transform magnitude between 9–10 Å
attributed to the noise. Obviously, this criterion cannot pretend
to the generality since it depends on the weighting (see [12], k3)
and the relative contribution of noise and the first coordination
shell into spectra.

Here, we propose another approach to the problem, also
based on the consideration of the heights of the FT peaks as
functions of the regularizer α (see figure 3). On increasing
α from zero, µ0 starts to deviate from the experimental
absorption µ, and |χ(r)| grows and then saturates, the peaks
at larger r being saturated earlier. Clearly, α should be
determined by the first peak height since it is the last to saturate.
Let us define the start of saturation on the minimum of second
derivative of the squared first peak with respect to ln α, the
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Figure 2. Extraction of XAFS from the measured absorption using the smoothing spline: (a) absorption coefficient µ, prior function µ∗
0

calculated by FEFF8 (dotted curve) and various post-edge backgrounds; (b) XAFS functions obtained with these backgrounds; and (c) their
module of FT. µ0(E), χ(k) · k2 and χ(r) obtained (——) with use of the prior function, and (- - - -) without prior function. The regularizer
α is the same for both cases. For examples, we used the spectrum at the Bi L3 absorption edge for Ba0.6K0.4BiO3 at 50 K recorded in
transmission mode at D-21 line of DCI (LURE). Energy step ∼1 eV, counting time 1 s. The double-crystal Si (311) monochromator was
detuned to minimize harmonic contamination.
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Figure 3. The |χ(r)| peak heights squared, H 2, maximal in the
indicated areas and average over the range 0 < r < 0.5 Å, as
functions of α. The right axis relates to the second derivative of the
square of first peak height with respect to ln α.

value of α in the minimum being declared to be optimal. It is
seen that the increase of α from the optimal leads to unwanted
rapid growth of |χ(r)| at low r . In the example in figure 2, the
regularizer is optimized following our new criterion.

4. Bayesian smooth curve

The method of Bayesian smoothing is ideologically similar
to the smoothing spline method, but has one global advantage:
within no other existing approach can one define and determine
the errors of the µ0 construction. Since the Bayesian
smoothing method finds the posterior distributions for all
µ0i , one can find not only average values but also standard
deviations and any desirable moments. In addition, within

the framework of the method it is possible (before the post-
edge background construction) to deconvolve µ with the
monochromator resolution curve. The weakness of the method
is its low speed. On a modern PC, it takes a few minutes for
the curve drawn through N ∼ 500 points to be smoothed.

Detailed formalism of the Bayesian smoothing is given
in the appendix. To determine µ̄0i and δµ0i one should find
eigenvalues and eigenvectors of a special five-diagonal square
N × N matrix. In figure 4, the Bayesian smoothing was
done on the mesh of N = 536 experimental points above the
absorption edge, with and without the prior function described
in the preceding section. In addition, we demanded from the
Bayesian curve in figure 4 to pass through a point nearest at
left toE0 (for this, the five-diagonal matrix should be changed,
see the appendix); this requirement does not practically affect
µ0, but affects δµ0i in the low-k region, as we shall see below.
The values µ̄0i and δ2(µ0i )were found by formulae (A.15) and
(A.16). Since the smoothed values µ̄0i do not lie within the
limits ±δµ0i from µi , we did not look for the most probable
smoothness (see the appendix). Instead, we considered the
regularizer to be known and equal to the optimal one found
for the smoothing spline method. As seen, we have obtained
completely the same XAFS function as that given by the
previous method. So, the only thing that warrants such a slow
method is that it gives the errors of the µ0 construction.

5. The errors of χ extraction

To derive the expression for the error of χ extraction, one
should note that because initially the pre-edge background
was subtracted from µexp, the experimentally obtained µ0 is
dependent on µb in such a way that the sum µ0 +µb is always,
independently of µb, a middle line of µexp. Therefore, the
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Figure 4. Extraction of XAFS from the measured absorption using
Bayesian smoothing. Prior function µ∗

0(E) for the atomic-like
absorption is represented by dots. µ0(E), χ(k) · k2 and χ(r)
obtained (——) with the use of the prior function and (- - - -)
without prior function. The dotted curve in (b), hardly seen in the
low-r region only, is obtained without additional requirement for µ0

to pass through a point immediately before E0. The regularizer α is
the same for all cases and equals the optimal one found for the
smoothing spline.

error of this sum is the error δµ0 of the post-edge background
construction. Thus, from χ = [µexp − (µ0 + µb)]/[(µ0 +
µb) − µb)] follows that δχ is the root-mean-square function
of δχb = χ · δµb/µ0, δχexp = δµexp/µ0, δχ0 = δµ0/µ0 and
χ · δµ0/µ0. We neglect the latter contribution in comparison
with the third one. Let us consider the others.

(i) µb is obtained via extrapolation of the spectrum pre-edge
part by a chosen law. There, a small random variation
of µexp leads to a considerable dispersion in the extended
region. An example of this random dispersion is shown
in figure 5(a) for eight different scans taken at various
temperatures; δµb was calculated as the standard deviation
from the average background. Instead of χ in the formula
δχb = χ · δµb/µ0, we used the envelope of χ , drawn in
figure 5(b) with grey shading. Even at high energies, the
ratio µb/µ0 equals a few per cent, so δχb is the smallest
contribution.

(ii) To determine that the experimental noise is a straight-
forward task for r-space, where EXAFS signals at high
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Figure 5. (a) Different experimental pre-edge backgrounds obtained
for eight different scans, used to determine the contribution of δχb.
(b) The errors of χ extraction. The solid curve with grey shading
represents the envelope of unweighted χ(k). The solid curve below
is δχb magnified by a factor of five. The dashed line represents the
noise estimate δχexp from FT. The dotted curves represent δχ0

obtained by the method of Bayesian smoothing (curve a) without
and (curves b and c) with the prior information specifying the
second derivative of µ0. In addition, for curve c, we have used the
information that µ0 passes through a point immediately before E0.

r clearly have noise character. Assuming noise in k-space
and r-space to be constant, via Parseval’s identity one
obtains [13]:

(
δχexp

)2 = n2
r

π

dk

2w + 1

k2w+1
max − k2w+1

min

(6)

where as nr the mean value of |χ(r)| serves, usually over
the range 15 < r < 25 Å. As seen from the formula,
δχexp depends on dk, the size of the evenly-spaced k-grid.
Although we have already used the Fourier transform, the
question of the choice of dk was not yet raised. The
algorithm of fast FT needs the transformed function to
be set on a uniform grid. Having chosen a small dk, we
artificially obtain a large number of ‘experimental’ values.
Naturally, this trick would not give more information than
we have from experiment and a small dk must give a large
δχexp. Conversely, we can obtain a small δχexp at the
expense of loss of experimental points at large dk. In our
example, the choice of dk = 0.03 Å−1 was based on the
equality of numbers of experimental points and the nodes
of the grid. The noise calculated via equation (6) is shown
in figure 5(b) by dashes.

(iii) One may argue that the errors of µ0 are not as important
since they are of low frequency and presumably are outside
(in r-space) the region of XAFS analysis. This may
be true only if one performs a fitting of the χ(r) or
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filtered χ(k). But many researchers try to fit the entire
χ(k) function, together with possibly undetermined slow
varying background. This is the first reason why we have
to know the errors of µ0. The second, and the main,
reason is that the µ0 drawn is not the atomic background
itself but an artificial representation of it. Therefore,
even if our µ0 is of zero frequency, considerable spectral
range (especially the signal from the first shell) may be
distorted by this representation. Speaking of the errors of
µ0 construction, we mean the deviation of our artificial
µ0 from the real background. The real background must
be nearly a middle line of the oscillating part of µ with
the second derivative which is either nearly small or
nearly close to the second derivative of the prior function.
The Bayesian analysis gives errors δµ0i within which lie
all such functions, and, among them, the real post-edge
background. Thus, the errors δµ0i are very important
because they account for possible deviation from the true
atomic background.

Having determined µ̄0i and δµ0i , we express the errors
δχ0 as δµ0i/µ̄0i . For our example spectrum they are shown
in figure 5(b) by dots. As seen, the introduction of the prior
information has significantly diminished δχ0. This is quite
natural, since any decrease of our ignorance about µ0 should
narrow the posterior distribution of µ0i for all i. Of course,
this concerns the experimental information as well: δχ0 are
the smaller (among equal-length spectra) the more measured
points the spectrum has.

Near the hanging ends of the spectrum, the errors of µ0

construction are, as expected, significantly larger than in the
inner area. The ends should be deleted after χ(k) extraction
or treated in a different way; we can take into account other
information that the atomic-like absorption must coincide with
the total absorption (minus pre-edge background) at energies
E < E0. As seen (curve c in figure 5(b)), in this case the left
spectrum end is saved for further analysis.

Now we can see that the main contribution to the error ofχ
extraction comes from the errors of the post-edge background
construction. It is quite reasonable to demand that the errors
of δχ were less than the XAFS signal (the envelope of χ ). For
the Bayesian curve a, this range is 0 � k � 14 Å−1. For the
Bayesian curves b and c, this range is wider, 0 � k � 16 Å−1.

For correct subsequent fitting of the XAFS signal, one
should determine, ideally, all sources of errors. However,
practically all programs of XAFS spectra processing [4] use
the noise, determined from FT, as uncertainties εi of χ(k)
determination in the definition of χ2 statistics:

χ2 = Nmax

M

M∑
i=1

[
(χexp)i − (χmod)i

]2

ε2
i

. (7)

It would be more correct to consider as εi the larger function
from the above listed contributions to δχ . In our example,
this is δχ0. Recently, Krappe and Rossner [3] have come
yet further. Into εi they include the noise, the error from the
truncation in the EXAFS formula summation, and the errors
derived from the theoretically calculated values. Among the
latter errors, the errors due to some uncertainties in scattering
amplitudes and phases can be easily defined because the
amplitudes and phases are explicitly contained in the EXAFS

formula. The backgroundsµb andµ0 are also calculated in [3],
but since they contribute to χ in a complicated way, their
errors, as before, are considered as vague ‘systematic errors’
and modelled as convenient. In [3], they were modelled by an
unjustified rectangular function and placed in a low-k region.

The values of εi are of certain importance because it is well
known that the understated εi give too optimistic uncertainties
of structural parameters. More realistic uncertainties are given
by more realistic errors of EXAFS function extraction.

6. Conclusion

In this paper, we have considered one of the most important
stages of XAFS function extraction from the measured
absorption, construction of the atomic-like absorption µ0.

For the widespread method of approximation of µ0 by a
smoothing spline we have proposed a way to take into account
the prior information about µ0. More specifically, one can
use the energy dependence of the second derivative of µ0,
calculated or measured in gaseous phase. The usage of the prior
information not only significantly corrects the signal from first
coordination sphere but also raises the stability of the spline
with respect to the variation of kmin, the left limit of XAFS
region. In addition, we have proposed a new criterion for
determination of the smoothing regularization parameter.

A new method for approximation of µ0 is proposed, the
method of Bayesian smoothing which gives almost the same
result as the smoothing spline method but is much slower.
However, the Bayesian smoothing is the only method that gives
the errors of approximation of the atomic-like background
by an artificial smooth function. As we have shown, these
errors are greater than the experimental noise determined
from Fourier analysis, and the use of these errors instead
of the noise in the definition of χ2 statistics leads to more
realistic uncertainties of structural parameters inferred in fitting
procedures. In addition, these errors impose more severe
restrictions on the EXAFS spectrum length than the noise.

Proposed in the paper, methods for background removal
and other stages of XAFS analysis are realized in the freeware
program VIPER [14].

Appendix. Bayesian smoothing and deconvolution

Here, we consider the general linear problem of data smoothing
with the use of statistical methods (for an introduction, see
the review by Turchin et al [15]). Let data d be defined on
the mesh x1, . . . , xN and consist of the true values t and the
additive noise n:

di = ti + ni i = 1, . . . , N. (A.1)

The problem of smoothing is to find the best estimates for t.
For an arbitrary node j , we find the probability density function
for tj given the data d:

P(tj |d) =
∫
P(t|d)dt �=j (A.2)

where P(t|d) is the joint probability density function for all
values t, and the integration is done over all ti �=j . According
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to Bayes theorem,

P(t|d) = P(d|t)P (t)
P (d)

(A.3)

P(t) being the joint prior probability for all ti , and P(d) is
a normalization constant. Assuming that the values ni are
independent in different nodes and normally distributed with
zero expected values, the probability P(d|t), the so-called
likelihood function, is given by

P(d|t, σ ) = (
2πσ 2

)−N/2
exp

(
− 1

2σ 2

N∑
k=1

(dk − tk)2
)
(A.4)

where the standard deviation of the noise, σ , appears as a
known value. Later, we apply the rules of probability theory
to remove σ from the problem.

Now we define prior probability P(t). Let the function
t (x) be known in advance to be smooth enough. To specify this
information, we introduce the norm of the second derivative
and indicate its expected approximate value:

'(t(x)) =
∫ (

d2t

dx2

)2

dx ≈ ω (A.5)

or, denoting�i = xi+1−xi , i = 1, . . . , N−1 and representing
the second derivative in the finite-difference form:

'(t(x)) ≡ '(t)

=
N−1∑
i=2

�−1
i

[
ti−1�

−1
i−1 − ti

(
�−1
i−1 +�−1

i

)
+ ti+1�

−1
i

]2

≡
N∑
k,l=1

'kltktl . (A.6)

'kl is a five-diagonal symmetric matrix with the following
non-zero elements:

'11 = �−2
1 �

−1
2

'22 = �−1
2

(
�−1

1 +�−1
2

)2
+�−2

2 �
−1
3

'12 = − (�1�2)
−1
(
�−1

1 +�−1
2

)
'ii = �−1

i

(
�−1
i +�−1

i−1

)2
+�−2

i �
−1
i+1 +�−3

i−1

'i−1,i = −�−2
i−1

(
�−1
i−1 +�−1

i−2

)− (�i−1�i)
−1
(
�−1
i−1 +�−1

i

)
'i−2,i = �−1

i−2�
−2
i−1

'NN = �−3
N−1

'N−1,N−1 = �−1
N−1

(
�−1
N−1 +�−1

N−2

)2
+�−3

N−2

'N−1,N = −�−2
N−1

(
�−1
N−1 +�−1

N−2

)
.

(A.7)
In order to introduce the minimum information in addition to
that contained in (A.6), from all normalized to unity functions
P(t) which satisfy the condition (A.6) we choose a single one
that contains minimum information about t, i.e. minimizes the
functional

I [P(t)] =
∫
P(t) lnP(t) dt + β

[
1 −

∫
P(t) dt

]

+γ

[
ω −

∫
'(t) P (t) dt

]
(A.8)

where β and γ are the Lagrange multipliers. Minimizing
I [P(t)], one obtains the equation set

lnP(t) + 1 − β − γ'(t) = 0∫
P(t) dt = 1 (A.9)∫

'(t) P (t) dt = ω

which has a solution:

P(t) = (λ1 · · · λN)−1/2

(
2πσ 2

α

)−N/2
exp

(
− α

2σ 2
'(t)

)
(A.10)

where α/2σ 2 = γ = N/2ω, and λ1, . . . , λN are the
eigenvalues of the matrix 'kl . The regularizer α will be used
to control the smoothness of t. The prior distribution obtained
is a ‘soft’ one, i.e. does not demand from the solution to have
a strictly prescribed form.

Thus, we have for the posterior probability density
function:

P(tj |d, σ, α) ∝
∫

dt �=j σ−2NαN/2

× exp

(
− 1

2σ 2

[
d2 − 2

N∑
k=1

dktk +
N∑
k,l=1

gkltktl

])
(A.11)

where

gkl = α'kl + δkl d2 =
N∑
k=1

d2
k . (A.12)

In most real problems, σ and α are not known. To
eliminate σ is quite a straightforward problem:

P(tj |d, α) =
∫

dσP (tj , σ |d, α) =
∫

dσP (σ)P (tj |d, σ, α)
(A.13)

one needs only to know a prior probability P(σ). Having no
specific information about σ , a Jeffreys prior P(σ) = 1/σ is
assigned [16]. Then

t̄j =
∫
tjP (tj |d, α)dtj ∝

∫
dt dσσ−2N−1tj

× exp

(
− 1

2σ 2

[
d2 − 2

N∑
k=1

dktk +
N∑
k,l=1

gkltktl

])
. (A.14)

Performing the diagonalization, one obtains:

t̄j =
N∑
i=1

hieij√
λ′
i

(A.15)

and for the variance δ2(tj ):

δ2(tj ) =
[
d2 − h2

]
N − 2

N∑
i=1

e2
ij

λ′
i

(A.16)

where

h2 =
N∑
i=1

h2
i hi = 1√

λ′
i

N∑
k=1

dkeik (A.17)
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and λ′
i and ei are the eigenvalues and eigenvectors,

respectively, of matrix g.
Thus, we have lost unknown σ and found the expressions

for mean values tj and their dispersions at known regularizer
α. In modern Bayesian methods, α is itself determined by
Bayesian arguments that maximize the posterior probability
of α given the data:

P(α|d)=
∫

dt dσP (α, σ, t|d)=
∫

dt dσP (α, σ )P (t|α, σ,d).
(A.18)

Assuming that α and σ are independent and using Bayes
theorem (A.3), one obtains:

P(α|d) ∝
∫

dt dσP (α)P (σ)P (t|α, σ )P (d|t, α, σ ).
(A.19)

Substituting (A.10) for the prior probability P(t|α, σ ), (A.4)
for the likelihood, and a Jeffreys prior P(σ) = 1/σ and
P(α) = 1/α, one obtains the posterior distribution for the
regularizer α:

P(α|d) ∝ (
λ′

1 · · · λ′
N

)−1/2
αN/2−1

[
d2 − h2

]−N/2
. (A.20)

Having found the maximum of the posterior probability (A.20),
at this α one has the sought t with the most probable
smoothness. However it is necessary to point out that this
procedure narrows the applicability of the Bayesian smoothing
down to the class of tasks where the smoothed values lie mostly
within the limits ±σ from the most probable. In practice, there
are other possible tasks where the condition (A.1) is treated
more widely and the smoothed values exceed the bounds of
noise.

Addenda to the Bayesian smoothing.

(i) Let the curvature of the function t (x) be approximately
known in advance. To specify this information,
introduce the norm of the difference between d2t/dx2 and
approximately known second derivative d2f/dx2:

'(t(x)) =
∫ (

d2t

dx2
− d2f

dx2

)2

dx ≈ ω. (A.21)

Notice that there is no need to know f (x) itself, its second
derivative is sufficient. The explicit presence of f (x) in
the following formulae should be taken as a consequence
of the technical trick applied: at first f (x) is subtracted
from the data, then it is added to the found solution.
Everywhere in formulae (A.6)–(A.20) we make the
substitutions:

t̃i = ti − fi d̃i = di − fi. (A.22)

Performing the described above procedure for smoothing,
one finds t̃i , from which by inverse transformation the
sought vector is given by t = t̃ + f .

(ii) In some tasks, the value on the starting (zero) node
is known without measurement. This sort of prior
information represents a ‘hard’ one, i.e. it restricts the class
of possible solutions. In the given case, the solution must
pass through the known zero node. The quadratic form

'(t) (or'(t̃) in the case of approximately known second
derivative) in the expression for the prior probability has
now changed:

'(t) =
N−1∑
i=1

[
ti−1�

−1
i−1 − ti

(
�−1
i−1 +�−1

i

)
+ ti+1�

−1
i

]2

≡
N∑
k,l=1

'kltktl +'00t
2
0 + 2'01t0t1 + 2'02t0t2. (A.23)

The first matrix elements of 'kl now are:

'00 = �−2
0 �

−1
1

'01 = − (�0�1)
−1
(
�−1

0 +�−1
1

)
'02 = �−1

0 �
−2
1

'11 = �−1
1

(
�−1

0 +�−1
1

)2
+�−1

1 �
−2
2

'12 = −�−2
1

(
�−1

1 +�−1
0

)− (�1�2)
−1
(
�−1

1 +�−1
2

)
'22 = �−1

2

(
�−1

2 +�−1
1

)2
+�−2

2 �
−1
3 +�−3

1 .

(A.24)
If t0 = 0 (or t̃0 = 0 if '(t̃) is used), no further changes
to the formulae of smoothing are needed. At t0 �= 0, the
changes are evident; instead of the scalar product dt in
(A.11) will be (d−d̂)t, where d̂1 = αt0'01, d̂2 = αt0'02,
all remaining d̂i = 0; to the d2 the term αt20'00 will be
added.

(iii) Making small changes in the above considered problem
of smoothing allows one to solve the problem of
deconvolution. If the experimental value dj on some node
j is determined not only by tj but also by the values of
some neighbouring nodes, then instead of (A.1) we have:

di =
N∑
j=1

rji tj + ni i = 1, . . . , N (A.25)

where rji is the grid representation of the impulse response
function

(∑N
j=1 rji = 1

)
. Instead of expression (A.4), for

the likelihood we now have:

P(d|t, σ ) = (2πσ 2)−N/2

× exp


− 1

2σ 2

N∑
k=1

[
dk −

N∑
i=1

rikti

]2

 (A.26)

and instead of (A.11), the posterior probability for tj is
now expressed as:

P(tj |d, σ, α) ∝
∫

dt �=j σ−2NαN/2 (A.27)

× exp

(
− 1

2σ 2

[
d2 − 2

N∑
k=1

Dktk +
N∑
k,l=1

Gkltktl

])

where

Gkl = α'kl +
N∑
i=1

rkirli Dk =
N∑
i=1

rkidi (A.28)

and matrix G, in general, has more than five diagonals.
Further steps for finding t are analogous to those described
above.
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