Studie zur Suche nach leichten Higgsbosonen im WH-Kanal bei CDF

Wim de Boer, Martin Erdmann, Bettina Hartmann, Martin Hennecke, Dominic Hirschbühl, <u>Yves Kemp</u>, Thomas Müller, Wolfgang Wagner

Universität Karlsruhe Institut für Experimentelle Kernphysik

21. März 2002

FERMILAB'S ACCELERATOR CHAIN

Verbesserungen in Run II

- Steigerung der Akzeptanz für Elektronen
- Steigerung der Akzeptanz für Muonen
- Besseres b-tagging

Relevante Prozesse für leichte Higgsbosonen

Wirkungsquerschnitte

Prozess	$\sigma_{ m tot}~({ m pb})$	# pro $1 fb^{-1}$
WH	0.16	12
$Wb\overline{b}$	33.39	3559
WZ	3.2	52
WG-Fusion (tbq)	2.44	260
s-Kanal (tb)	0.88	93
$t ar{t}$	6.72	980
Total Untergrund	46.63	4944
$Wqar{q}$	21825	33950

Die Studie

- Erste Higgs-Studie mit CDF-Detektorsimulation (hadronisches und EM-Kalorimeter, sowie COT-Spurkammer)
- Zerfallskanäle $W \to e \nu$ und $H \to b \bar{b}$
- b-tagging wird parametrisiert (da Silicon-Vertex-Detektor noch nicht simuliert)
- Es wird nur ein b-tag gefordert

WH, $t\bar{t}$, WZ, s-Kanal Single-top und WG-fusion: Jeweils 10000 Ereignisse $Wb\bar{b}$ und $Wq\bar{q}$: Jeweils 50000 Ereignisse 100-140 kByte/Ereignis (ohne Silicon) 3.3 sec/Ereignis CPU-Zeit (PIII 600MHz) Generator: PYTHIA Jetrekonstruktion mit k_T -Algorithmus mit Radius 0.7

Tagging und Mistagging

Tagging-Effizienz bei b-jets

 $\epsilon \approx 60\%$ für grosse P_T $H \rightarrow b\bar{b}$ Forderung: 2 tags: ca 36% der Ereignisse werden betrachtet Forderung: nur 1 tag: ca 84% der Ereignisse werden betrachtet

Mistagging-Wahrscheinlichkeit bei leichten Jets

Forderung: 2 tags: \overline{W} + 2 leichte Quarks spielt keine Rolle Forderung: nur 1 tag: Bis zu 2% der $Wq\bar{q}$ -Ereignisse werden

betrachtet

Universität Karlsruhe (TH)

Schnittszenario

	HM	single top	$t ar{t}$	ZM	Wbb	$Mq\bar{q}$	Total
σ [pb] Harter Prozess	0.16	3.22	6.72	3.2	33.39	$2.2 imes 10^4$	Untergrund
$\sigma imes$ BR auf 1fb $^{-1}$ normiert	12	353.8	086	51.6	3559	$3.4 imes 10^4$	
Vorselektionsschnitte:		mit $e^{\pm i}$ $E_T > 1$ $N_{ m jet}$ 2 o	m fiducial 5 GeV d. 3 und 1	Volume b-tag			
normiert	3.293	70.28	144.2	10.96	72.68	228.4	536.5
Selektionsschnitte:		$egin{array}{c} \Delta\eta_{WH} < \ \eta_{H} < \ 2.5 < \Delta \ 40 < \Sigma \ P_{T, { m Drift}} \ 40 < M \ 40 < M \end{array}$	$egin{array}{c} I \ 2 \ 2 \ R \eta arphi (W) \ PT] ext{jets} < eta \ ext{ter Jet} < eta \ H < 100 \ H < 100 \ H < 100 \ H < 100 \ H > 100 \ H $	H) < 4 140 GeV 20 GeV GeV			
normiert	1.81	20.23	23.5	4.11	10.4	31.9	90.14

Yves Kemp

Universität Karlsruhe (TH)

(Detail)	
ittszenario	
Schni	

	HM	single top	$t \overline{t}$	ZM	$Wb\overline{b}$	bbM	Total
] Harter Prozess	0.16	3.22	6.72	3.2	33.39	$2.2 imes 10^4$	Untergrund
generiert	10000	19999	10000	10000	44950	49909	
$r imes 1$ fb $^{-1}$ normiert	12	353.8	086	51.6	3559	$3.4 imes 10^4$	
z^{\pm} im fiducial Volume	7307	14417	7448	7167	34375	66822	
> 15 GeV	6681	13453	7006	6691	32753	32917	
2 od. 3 und 1 b-tag	2744	4369	1467	2125	1020	424	
liert	3.293	70.28	144.2	10.96	72.68	228.4	536.5
WH < 2	2478	3705	1327	1381	701	251	
< 2	2226	3079	1265	1187	532	169	
$<\Delta R_{\eta\varphi}(WH) < 4$	2130	2974	1068	1118	480	167	
$<\Sigma P_{ m Tiets} < 140$ GeV	1869	2473	715	978	279	76	
Dritter $J_{ m et}$ < 20 GeV	1719	2296	385	912	270	75	
iert	2.06	35.23	37.7	4.71	19.23	51.0	147.87
$< M_H^{\sf korr} < 115$ GeV	1.92	15.91	21.8	2.89	4.13	7.48	52.2
ie mit parametrisierter							
ktorsimulation, 2 b-tags							
Annahme von	2	7	17	5.5	29.5		59
Dijet-Massenauflösung							
(sreport)							

Yves Kemp

Qualität der Rekonstruktion

 \Rightarrow Jet-Korrekturen sind wichtig!

Schnitt: $|\eta_H| < 2$

Schnitt: $40 < \Sigma P_{Tjets} < 140$ GeV

Ergebnisse der Studie:

Massenplot

Bei 15 fb⁻¹ mit 25% Di-Jet-Massenauflösung: 27 Signalereignisse 1352 Untergrundereignisse $\rightarrow S/B = 0.02$ $\rightarrow S/\sqrt{B} = 0.74$ Zusammenfassung und Ausblick

- Wiederholung der Higgsreport-Studie
- 1 b-tag

- 2-Jet-Massenauflösung muss verbessert werden!
- Andere Zerfalls- und Produktionskanäle (*ZH*...) betrachten
- Bessere Analysewerkzeuge (Neuronale Netze)