An Artifial Neural Network for Plug Electron Identification

Yves Kemp, Thomas Müller, Hartmut Stadie, Wolfgang Wagner

Universität Karlsruhe

An Artifial Neural Network for Plug Electron Identification - p. 1/1

Use of plug electrons for analysis

 η -distribution of electrons in 4.11 version of single top analysis (after preselection) $\eta\text{-distribution}$ of electrons in t-channel MC. ca 30% with $|\eta|>1.1$

Selection of the samples

- Signal sample:
 - 1 tight central electron with track
 - Another electron candidate in plug (Z-Candidate)
 - Cuts to be independent of trigger cuts
 - 2000 events remain
- Background sample:
 - 2 balanced jets (1 central, 1 plug)
 - Several preselection cuts
 - 30000 events remain
- Both samples taken from data! (bpel08) cdfsoft2 versions 4.9 and 4.11

Control plot: E_T of plug electron

Variables for plug electron ID

- Fiducial cut: $1.2 < |\eta| < 2.8$
- EmE_T
- (Phoenix-)Track

- HadE/EmE (sliding cut)
- Isolation Ratio
- PEM χ^2 (comparision with test beam data
- PES 5by9 u (Shower profile in PES in u direction)
- PES 5by9 v (Shower profile in PES in v direction)

Selection variables

Correlation matrix

	Target	HadEm	lso	$PEM\chi^2$	PES 5/9 u	PES 5/9 v
Target	100.0	-49.4	-66.6	-64.5	43.9	43.2
HadEm		100.0	52.8	44.8	-24.8	-24.2
lso			100.0	72.0	-38.9	-38.5
$PEM\chi^2$				100.0	-42.8	-43.4
PES 5/9 u					100.0	45.9
PES 5/9 v						100.0

Target is -1 for background, 1 for signal

Correlation between the two PES 5/9 variables due to cross talk and geometry

Artificial Neural Network

5 input variables (+ 1 bias node)

	rank	correlation σ
Had/Em	5	4.8
Isolation	1	57
$PEM\;\chi^2$	3	14
PES 5/9 u	4	11
PES 5/9 v	2	20

- Preprocessing of the variables
- 5 nodes in intermediate layer
- Binary classification (-1 background, 1 signal)
- 50 iterations
- NeuroBayes ANN package (see Ulrichs talk)

Artificial Neural Network results

- Standard Cuts:
 - Signal efficiency 84%
 - Background eff. 5.3%
- ANN cut > 0.65:
 - Same signal efficiency
 - Background eff. 3.5%
 - 34% less background
- **•** ANN cut > 0.40:
 - Same background eff.
 - Signal efficiency 91%
 - 8% more signal

Independent tests

Missing ET NN cut: 5679 ev. < 25 GeV standard: 6483 ev. < 25 Gev Transverse W-Mass (MET > 15 GeV) NN cut: 5738 events standard: 5533 events

Background estimation: 4-sector method

$$\Rightarrow \frac{^{N}\text{QCD in D}}{^{N}\text{Total in D}} = 20.4\%$$

This method does not work for ANN cut

sample: All events with one plug candidate + track

QCD background estimation: Fit method

Idea: Fit background and MC to data Background: Invert ANN cut: < -0.95 MC: W+jets sample Fit: Scaling factors for background and MC, fit MET in interval 15-30 GeV

ANN >0.5:

$$\Rightarrow \frac{^{N}\text{QCD in MET} > 20 \text{ GeV}}{^{N}\text{Total in MET} > 20 \text{ GeV}} = 15.3\%$$

Standard Cuts:

$$\Rightarrow \frac{^{N}\text{QCD in MET} > 20 \text{ GeV}}{^{N}\text{Total in MET} > 20 \text{ GeV}} = 17.9\%$$

sample: All events with one plug candidate + track

Jet multiplicity

Jets	Data	QCD	Data - QCD			
0	39693	2581	37112			
1	7507	4204	3303			
2	1976	1083	893			
3	402	240	262			
4	53	44	11			
With CDF standard cuts						
0	37960	2990	35870			
2	1926	1255	673			

sample: All events with one plug candidate + track Additional requirement: MET > 20 GeV(realistic scenario for W+jets analysis)

An Artifial Neural Network for Plug Electron Identification - p. 13/

Exclusive 2-Jet Bin

- Varying ANN cut such that S/B or S/\sqrt{B} is optimal
- ho \sim 20% less background
- $m extsf{s}$ ~ 5.7% more signal

Conclusion, Outlook

- Plug electrons will give better single top limit
- Identification with Artificial Neural Network useful
- \sim 20% less background in 2-jet-bin
- \sim 5.7% more signal in 2-jet-bin
- Plan to provide easy-to-use generic tool

- Waiting for Gen 5 plug TopNtuples
- Determine acceptance and efficiencies
- Integrate into next round of single top analysis