Search for Single-Top Quark Production at CDF

Yves Kemp University of Karlsruhe on behalf of the CDF collaboration

HEP2005 Lisboa, 7/23/2005

Single Top Production at Tevatron

- V_{tb} CKM matrix element
- top polarisation and V-A structure of EWK top interaction
- Probe b-quark PDF (t-channel)
- Look for physics beyond SM
 - 4th generation
 - anomalous W_{tb} couplings
 - FCNC (t \rightarrow Z/ γ c)
- Irreducible background to associated Higgs production

S ^{1/2}	NLO Cross-	
=1.96TeV	sections	
t-channel	1.98±0.25 pb	
s-channel	0.88±0.11 pb	
t-tbar	6.77±0.42 pb	

- B.W. Harris et al.: Phys. Rev. D 66, 054024
- Z. Sullivan: Phys. Rev. D 70 114012
- Kidonakis 2003: Phys. Rev. D 68 114014

Event Signature

High-P_T electron or muon
 Missing transverse energy
 2 jets

- s-channel: 2 b-jets
- t-channel:
 - 1 b-jet + 1 light-quark-jet + 1 soft b-jet (from gluon splitting) which is rarely seen

CDF Run II Analysis: Event Selection

- Phys.Rev.D71:012005,2005
- Look in the W+2 jets channel:
 - 1 lepton with $E_T > 20$ GeV, $|\eta| < 1.0$
 - missing transverse energy: $ME_T > 20 \text{ GeV}$
 - 2 jets : E_T > 15 GeV, |η| < 2.8</p>
 - at least one b-tag (displaced sec. vertex)
 - Veto dilepton from Z and ttbar, conversion events
- Topological cuts:
 - $140 < M_{lvb} < 210 \text{ GeV/c}^2$
 - (combined and separate searches)
 - leading jet E_T > 30 GeV
 - (separate search for t-channel only)
- Backgrounds: non-top and tt

Run: 153389 · Event: 361345 •CEM Electron E_T =50.9 GeV, η =0.24 •MET=25.7 GeV, Phi=5.6 •Jet1 E_T =173.8 GeV, η =0.45 •Jet2 E_T =149.8 GeV, η =-0.13 •HT = 475 GeV, MIvb=173 GeV/*c*2

Backgrounds

W+jets (Wbb, mistagged Wcc, Wc...)

- Challenging background both in term of quantification & shape variables
- Estimated from data & MC
- Heavy Flavor fractions (b,c) from ALPGEN + Herwig
- Normalization from data before b-tagging

Multijet events

- Jet misidentified as lepton & semi-leptonic decay of HF jets (bb)
- Estimated from data
- WW, WZ, $Z \rightarrow \tau \tau$, Top pair production
 - Estimated from Pythia and theoretical cross section

Event yield with 162 pb⁻¹

Process	Combined	1-tag	2-tag
tt	3.8 ± 0.9	3.2 ± 0.7	0.60 ± 0.14
Non-top	30.0 ± 5.8	23.3 ± 4.6	2.59 ± 0.71
Sum Background	33.8 ± 5.9	26.5 ± 4.7	3.19 ± 0.72
t-channel	2.8 ± 0.5	2.7 ± 0.4	0.02 ± 0.01
s-channel	1.5 ± 0.2	1.1 ± 0.2	0.32 ± 0.05
Sum Single-Top	4.3 ± 0.5	3.8 ± 0.4	0.34 ± 0.05
Sum Expected	38.1 ± 5.9	30.3 ± 4.7	3.53 ± 0.72
Observed	42	33	6

Background dominated

Results of combined search

	Most	prot	babl	le v	value:
--	------	------	------	------	--------

β units	pb
2.7 ^{+1.8} -1.7	7.7 +5.1

Y. Kemp

7

Expected limit: 13.6 pb

Observed limit: 17.8 pb

Results of separate search

t-channel:

Expected limit: 11.2 pb Observed limit: 10.1 pb s-channel:

Expected limit: 12.1 pb

Y. Kemp 8 Observed limit : 13.6 pb

Most probable value:

Channel	βunits	pb
t-channel	0.0 ^{+2.4} -0.0	0.0 ^{+4.7} _{-0.0}
s-channel	5.2 ^{+4.3} -4.3	4.6 ^{+3.8} _{-3.8}

D0 analysis (230 pb⁻¹)

- hep-ex/0505063, submitted to PLB
- Lepton (e/ μ): P_T>15 GeV, $|\eta_{e(\mu)}|<1.1$ (2.0)
- Jets: $2 \le N_{jets} \le 4$, $E_T > 15$ GeV, $|\eta| < 3.4$, Missing E_T : $E_T > 15$ GeV
- Combined several discriminating kinematic variables in neural networks (Wbb & tt→l+jets)
- Use 2D output in a likelihood

Source	s-channel search	t-channel search
tb	5.5 ± 1.2	4.7 ± 1.0
tqb	8.6 ± 1.9	8.5 ± 1.9
W+jets	169.1 ± 19.2	163.9 ± 17.8
$t\bar{t}$	78.3 ± 17.6	75.9 ± 17.0
Multijet	31.4 ± 3.3	31.3 ± 3.2
Total background	287.4 ± 31.4	275.8 ± 31.5
Observed events	283	271

 $\sigma_{t} < 5.8 / 5.0 \text{ pb}$

CDF: Improvements planned for the 2005/2006 analysis:

Electrons in forward region

- Up to now: Only electrons in central region of the CDF detector (|η|<1.1)</p>
- ~30% of signal events have electrons in forward region
- To better discriminate against QCD multijet-BG: use Neural Network techniques

First studies: 20% less BG using NN techniques

Extended b-tagging

Secondary vertex mainly exploits long lifetime

Improve purity by including

- Long lifetime
 - Decay length of secondary vertex
 - D₀ of tracks
- Large mass
 - Mass at secondary vertex
 - p_T of tracks w.r.t jet axis
- Decay multiplicity
 - # of tracks
- Decay probability into leptons
 #of leptons
- First studies using Neural Network Techniques:
 - Efficiency on single top signal: ~90%
 - Remove ~60% of vertex tagged W+non-b jets events

Advanced analysis methods

First studies (162pb⁻¹)

- Maximum S/\sqrt{B} : 0.98
- Improvement by +32%

Projections (combined search):

- With 1fb⁻¹ expect $S/\sqrt{B} = 2.4$
- Reach S/ \sqrt{B} =3.0 for 1.5 fb⁻¹ with N_{sig} = 27.3 events

Neural Network:

Output for Signal (35%) Background (65%) 17 variables used

Network Output for Signal and Background

Summary & Outlook

Channel	CDF [pb]	D0 [pb]
	(162 pb ⁻¹)	(230 pb ⁻¹)
s+t	<17.8 (13.6)	
S	<13.6 (12.1)	<6.4 (4.5)
t	<10.1 (11.2)	<5.8 (5.0)

- First pass completed for CDF and D0
- CDF planning several improvements
 - Forward electrons
 - B-tagging
 - Use of advanced analysis methods
 - More data...
- Challenging analysis, observation feasible in Run II

Backup Slides

CDF Likelihood Method

- Inclusion of systematic uncertainties in upper limits
- Consistent Bayesian treatment
- All nuisance parameters representing syst. shifts in acceptance and template shape are included in the likelihood
- All correlations between the parameters are included

t-channel matching

LO process: b-quark structure function

- P_T too soft, η too forward
- Matching:
 - Generate 2→2 and 2→3 events with MadEvent
 - Match distributions
 - Compare with ZTOP (NLO calculation)
- Good agreement

CDF Search strategies

Combined Search:

- Signal: s-channel and t-channel single-top events
- Both cross-sections proportional to |V_{tb}|²
- Exploits distributions similar for s- and t-channels:
 - H_T = the total transverse energy in the event (E_T lep + ME_T + ΣE_T jet)

Separate Search:

- 1. Signal = t-channel (s-channel is a background)
 - FCNC couplings, anomalous V+A contributions to the W-t-b vertex, etc.
 - Q• η variable (Q = lepton charge, η = pseudorapidity of non b-tagged jet)
 - Q• η asymmetric in t-channel events: N(Q• η >0) = 2* N(Q• η <0)
- 2. Signal = s-channel (t-channel is a background)
 - Heavy charged vector bosons W', CP-violation effects within MSSM, Kaluza-Klein excited W-boson within MSSM
 - Double b-tags simple counting

CDF Acceptance uncertainties

		Separate Search		Combined Search
No.	Source	t-channel	s-channel	
1	Jet en. scale (+1 σ /-1 σ)	+2.4 / -6.7%	+0.4 / -3.1%	+0.1 / -4.3%
2	ISR	±1.0%	±0.6%	±1.0%
3	FSR	±2.2%	±5.3%	±2.6%
4	PDF	±4.4%	±2.5%	±3.8%
5	MC Generator	±5.0%	±2.0%	±3.0%
6	Top mass (-5 /+5 GeV)	-6.9 / +0.7%	-2.3%	-4.4 / -0.7 %
7	ε _{trig} , ε _{ID} , luminosity	±9.8%	±9.8%	±9.8%