The National Analysis Facility @ DESY

Yves Kemp for the NAF team
DESY IT Hamburg & DV Zeuthen

10.9.2008
GridKA School
- **NAF: National Analysis Facility**
 - Why a talk about an “Analysis Facility” at a Grid School?

- **This talk will show you**
 - what kind of requirements for computing resources Analysis has
 - where the Grid can meet them and where it cannot
 - planning details of the NAF
HEP Computing: Data centric

Collisions at 40 MHz
Recorded at ~100 Hz
Total RAW data by all LHC experiments:
15 PB/year

Atlas pp collision
Different tasks: Different requirements

- **MC Production**
 - Event Generation: no I; small O; little CPU
 - Detector Simulation: small I; large O & CPU

- **Event Reconstruction/Reprocessing**
 - Reprocessing: full I; full O; large CPU
 - Selections: large I; large O; large CPU

- **Analysis**
 - Usually: large I; small O; little CPU
 - Performed by many users, many times!
 - LHC StartUp phase: Short turn-around
The Grid: Distribute Data over distributed computing centers
Each layer:
Specialized for certain tasks
- Analysis
- User access
- AOD storage

DESY Grid:
Serves Atlas & CMS
ILC & Calice
HERA-Experiments
...
Do we need something in addition?

- Grid and the Tier model well suited for
 - Global & coordinated tasks
- Analysis
 - Local & uncoordinated, unstructured
- Provide best possible infrastructure and tools for German researchers
 - In addition to global Grid resources
- Join forces and create synergies among German scientists

- The NAF: National Analysis Facility
 - Located at DESY: Data is there
The NAF is part of the Strategic Helmholtz Alliance
 - More: http://terascale.desy.de/

Only accessible by German research groups for LHC and ILC tasks
 - Planned for a size of about 1.5 av. Tier 2, but with more data
 - Starting as joint activity @ DESY

Requirements papers from German Atlas and CMS groups
Starting with Atlas & CMS

- **Requirement papers. Some points:**
 - **Interactive login**
 - Code development & testing, Experiment SW and tools
 - Uniform access
 - Central registry
 - **Personal/group storage**
 - AFS home directories (and access to other AFS cells)
 - **High-capacity /High-bandwidth storage**
 - Local part (potentially with backup)
 - Grid part: Enlargement of the T2 part

- **Batch-like resources:**
 - Local access: short queue, for testing purpose
 - Large part (only) available via Grid-mechanisms
 - Fast response wanted for local&Grid

- **Hosted Data:**
 - AODs (Full set in case for Atlas, maybe trade some for ESD?)
 - TAG database
 - User/Group data

- **Additional services**
 - PROOF farm, with connection to high-bandwidth storage

- **Flexible setup**
 - Allows reassignment of hosts between different types of services
Infrastructure building blocks

- Interactive
- Local Batch
- Proof
- NAF Grid
- Grid Cluster
- AFS
- Parallel Cluster FS
- Dedicated space
- DESY Grid dCache Storage
- Grid-ftp, SRM
- AFS/Kerberos
- scp
- SRM?
Grid Part of NAF

- Use VOMS!! `voms-proxy-init --voms`
 - `atlas cms`
 - `atlas:/atlas/de cms:/cms/dcms`

- NAF Grid ressources integrated into DESY Grid Cluster
 - Separate Fairshare and Priority for German users
 - Access to storage based on VOMS groups/roles to come!
NAF login, interactive

Compute Nodes:
- Workgroup servers
- Local batch nodes

- Workgroup servers
- Local batch nodes
IO and Storage

- New AFS cell: naf.desy.de
 - User & Working group directories
 - Special software area
 - Safe and distributed storage

- Cluster File System
 - High Bandwidth (O(GB/s)) to large Storage (O(10TB))
 - Copy data from Grid, process data, save results to AFS or Grid
 - “Scratch-like” space, lifetime t.b.d., but longer than typical job
 - Locally connected via InfiniBand, remote access via TCP/IP

- dCache
 - Well-known product and access methods
 - Central entry point for data import and exchange
 - Special space for German users
Storage organization

- **ATLAS**
 - “DESY has 100% of the AODs”: Distributed between HH and Zn
 - More than the nominal T2 pledge: Additions are “the NAF part”
 - RDO/ESD at a smaller level, if requested and if space

- **CMS**
 - Concept of “T2 hosting an analysis”
 - DESY-HH try to host as many analysis as possible
 - Have all interesting data for physics

- **ILC/CALICE**
 - Already have MC data (ILC) and real data (CALICE)
 - But at a smaller scale

- **dCache SE to host these data!**
Access to storage

- AFS well known product, access clear
- Lustre: is a cluster filesystem
 - Use as a normal filesystem
 - (OK: some limitations concerning locking and handling of many small files...)
- dCache: different access methods:
 - Via Grid methods: LFC ...
 - /pnfs mount: BUT: Security and performance problems!
 - DESY summer student Malte Nuhn: Development of secure and low-resource consuming tools for replacing /pnfs mount
Software

- Experiment specific software: Grid and Interactive world:
 - DESY provides space and tools: Experiments install their software themselves
 - Because of current nature of Grid and Interactive parts: Two different areas
- Common software:
 - Grid world: Standard worker node installation
 - Interactive world: Compilers, debuggers… ROOT, CERNLIB
- Operation System:
 - Currently all Grid WNs on SL4 (64 bit)
 - InteractiveSL4 (64bit) (some SL5 testing machines). No SL3
PROOF: Experience from CMS

Test by UniHH running proof under SGE batch, data on Lustre FS.

Vergleich Hamburg-Zeuthen

Infiniband

tcp buffer tuning

no tcp buffer tuning

Legend
- Hamburg
- Zeuthen
- Zeuthen (neu)

Courtesy of Wolf Behrenhoff
PROOF from CMS, cntd.

- running on SGE batch farm
 - access to Lustre, dCache, ...
- every user starts his/her own PROOF cluster
 - crashes, segfaults, ... never affect others
 - no need to deal with authentication, permissions, ...
 - simple setup, scripted start/stop
 - no version/compatibility problems. One user can run 5.14 (CMSSW 1.x), others can use 5.18 at the same time
- First user doing real analysis since July 4th

Courtesy of Wolf Behrenhoff
More information: See PROOF/ROOT tutorial for general PROOF or attend the CMS course this afternoon
Support, Documentation, NUC

- **Docu**
 - Main entry point: http://naf.desy.de/
 - Links to experiment-specific pages linked from here

- **Support**
 - General entry point: naf-helpdesk@desy.de
 - Experiment-specific support: See their docu

- **NAF Users Committee NUC**
 - Atlas: Wolfgang Ehrenfeld, DESY Jan-Erik Sundermann, Freiburg
 - CMS: Hartmut Stadie, Uni-HH Carsten Hof, Aachen
Summary & Outlook

- NAF already has many active users

- All building blocks in place
 - Still tuning needed for some

- Additional services wanted
 - e.g. TAG-DB for ATLAS: to come

- YOU should get an account (if you not already have one:-))
 - CMS tutorial this afternoon on NAF
 - ATLAS tutorial next week @ Munich on NAF
Backup: Current and prospected hardware

- NAF-Batch: currently 264 cores (HH+Zn)
 - 2008: HH +256 ; Zn +128

- NAF-Grid: German groups have each:
 - 10% of 1262 cores fairshare.

- Lustre: ~60 TB (in HH)

- dCache: (T2 & NAF !!)
 - Enlargement of HH 480 TB / ZN 90TB in 2008
 - + other backbone systems