Applications of Virtualization Techniques in the Grid Context

Yves Kemp
DESY IT

GridKa School 2007
What is virtualization?

- Definition from Enterprise Management Associates:
 - technique for **hiding physical characteristics** of computing resources from the way in which other systems, applications, or end users interact with those resources.
 - making a single physical resource appear to function as multiple logical resources
 - server, operating system, application, storage device
 - making multiple physical resources appear as a single logical resource.
 - storage devices or servers

- Grid Computing is about Virtualization of resources!
 - Hides physical characteristics by introducing a standardized layer of abstraction → Multiple resources appear as one single logical resource.

This talk is about OS virtualization and its applications in the Grid field
Overview

- Not a coherent talk
 → Collection of ideas about uses of virtualization:

 - Consolidation
 - Server, Grid Services
 - Computing centers
 - Testing & Deployment
 - Computing nodes
 - Tools
Consolidation

- Server consolidation via Virtualization established in the IT world
 - Services might have to run on separate OS instances
 - Leads to server sprawl
 - Virtualization saves space, energy, hardware costs, maintenance...
 - Virtualization enables higher QoS, new features:
 - Redundancy, security, migration, …
Examples:

- **University of Karlsruhe: EKP**
 - Small site: service nodes (CE, SE, MON) not under heavy load
 - One single powerful machine, with failsafe hardware hosts up to 8 service nodes
 - Using Xen

- **Experience: Good!**
 - Started with Grid Services, now virtualizing the other server infrastructure (ldap, print server…)
 - Two identical server, shared Distributed Raid Block Device enables live migration
 - More reliable hardware, OS deployment eased, admins can concentrate on other things

Büge et. al. eScience 06
Consolidation, examples contd.

- Grid-Ireland Setup:
 - Operations Centre at the Trinity College Dublin:
 - Provides top-level services (RB, LFC, VO...)
 - Provides and manages Grid-Gateways for 17 sites in Ireland
 - Local site admins only manage their Worker Nodes
 - All local grid services running in VMs (Xen) in one physical box
- Experiences:
 - Massive expansion of Grid sites
 - Custom testbeds for developers
 - Management tools needed!!!
Consolidation, examples contd.

- MetaCenter (Brno, Prague, Pilsen & CESNET)
 - EGEE in a box: 7 Xen domains running different services

- Example of not-yet-virtualized site: DESY-HH
 - Some production service nodes under heavy load: CE, SE components, …
 - Some services (RB) different independent boxes
 - Investigating possibility of “spreading one VM over multiple boxes”
Consolidating whole Clusters

- One cluster might be “too small” for one application
 - Aggregation of clusters
 - Dynamic re-partitioning of clusters
- Also formation of sub-clusters possible
- MPI over WAN cluster
WAN, Multi-Site MPI using XEN

- **General setup:**
 - Xen 3.0.2, Linux 2.6.16

- **Variations:**
 - Connection over LAN (Gbit)
 - WAN via PacketiX
 - WAN via OpenVPN

- **Results:**
 - Virtualization overhead: 0-20% on 4-128-node clusters
 - Overhead smallest when compute-intensive
 - Migration of VMs possible

- **Is this a model for federated Tier-Centres?**

Tatezono et.al XHPC06
Dynamic Virtual Clustering

- **Idea:** Use existing clusters and dynamically “reassemble” them for different applications
 - Using virtualization (Xen)
 - Provide always needed OS
 - VMs in correct network
 - Integrated in the batch system (Moab)
 - Capacity of Load Balancing over cluster boundaries

- **Implementation details:**
 - Batch server dynamically adds or removes VMs from Torque resource manager
 - VM image staged to local disk, started, and deleted after job execution
 - Modifications to the Moab scheduler (together with developers)

Emeneker et. al, XHPC06
Testing and Deployment

- Virtues of Virtualization:
 - Fast and flexible deployment of machines
 - Faster installation than physical machine installation through image management
 - Different OS flavors on one/few machines
 - Snapshots: Save state of a machine before major intervention, easy roll-back
 - Enables complex testing and deployment workflows
 - Always clean and predictable environment
 - Development for upcoming platforms (emulation)
dCache build service @ DESY

- **Purpose**
 - Unified build service for dCache and Desy code
 - No more builds on developers machines
 - Secure and up to date build environment
 - Automated test deployments Suite

- **Design**
 - CVS, busybox, apt-get, xen-image-manager.py
 - Modular and simple
 - Fast: Reinstall 45-90 sec.
 - Automatic regression tests possible

1) Publish CVS tag into RDBMS
2) Triggers installation
3,4) System updated, build dependencies installed
5) Build state recorded in DB
6,7) Packages made available

Owen.Synge@desy.de
vGrid: Virtualization in gLite certification

- Certification testbed
 - ~60 machines @ CERN plus several other sites
 - All gLite services present
 - Daily regression tests
 - Installation (rpm) and configuration of patches

- Problems
 - Simultaneous Certification of several patches can cause conflicts
 - Patches often fail at RPM install or configuration
 - Testing: Switch quickly between different versions

- Solution:
 - 10 SLC4 machines with Xen 3.0.1, LVM
 - 28 hostnames/IP numbers
 - Heavily in use since October 2006
 - SLC3/4 images, users install gLite services on them
 - No scheduler: Users decides where to install

- Management using SmartFrog

- vGrid Portal at Cern: http://vgrid.web.cern.ch/

Omer.Khalid@cern.ch
Virtualization on the Worker Nodes

- Surprising idea: Virtualization costs performance, but many benefits:
 - More OS types and flavors can be supported, also old OS on new hardware possible
 - Each job runs in his own OS instance, does not affect other jobs: security through encapsulation
 - Separation of local and grid environment/users
 - Desktop harvesting?
 - Each job might get a clean system at start: No trojans
 - Buy a general purpose cluster, and use it for many different purposes
 - Job migration and checkpointing: Interesting for MPI and very long jobs
 - Distributed administration: Local admin installs VMM, generic Virtual Machine provided by user or third party

- One of the key issues: Integration into a batch system!
At Karlsruhe University:

- All nodes have two OS running all the time
- The OS needed gets all CPU and RAM resources
- Sharing all resources

- Using Xen: No noticeable performance loss due to virtualization:
 - Around 3-4% loss for CMS software
- Even performance gain is possible:
 - AMS group could benefit from 64 bit, but 32 bit common agreement
 - Galprop runs 22% faster in a virtual 64-bit machine than on 32-bit native system!

→ A overall performance gain can be possible (at least no drastic performance losses)
Integration into Batch system

- Batch system must know about the partitioning of the nodes, and must steer resource allocation
- Torque/Maui running
- Ansatz: Do not change any line of code in existing products!
- Written additional daemon

Problem: Writing a second scheduler, concurrent to Maui

Büge, Kemp, Oberst et. al. XHPC 06
Magrathea

- Small change to PBSpro (scheduler)
- Additional daemon (Magrathea): running on each physical machine
- One VM/node active (all resources), others might start: preemption
- Using PBS attributes to distinguish free/running/occupied machines

J. Denemark et. al., CGW06 and Desy Workshop Jan.07
Changing Moab

- **Arizona State University with Cluster Resources**
 - ASU has different clusters: interconnect with private, high-bandwidth network
 - Dynamic Virtual Clustering:
 - Deploys VMs in a (multi-)cluster to execute jobs
 - Software stack put into VMs and used anywhere
 - Scheduler deploys VMs to run user jobs
 - Implementation:
 - Moab scheduler modified: create and control VMs
 - VMs created for each job, customized at boot
 - VM disk images in central location
 - Using Xen (also considered Vmware and UML)
 - Results: better job throughput

http://hpc.asu.edu/dvc/
Other followed this way:

- ASU changed Moab for their purpose
- First HEP site evaluation this solution:
 - Simon Fraser University (Canada)
 - Atlas (Grid) on WestGrid (local jobs) resources
- Atlas and local jobs on same hardware!
 - Different OS and software stack
- Three different jobs types:
 - Local MPI Jobs: in non-virtualized environment
 - Local serial jobs: XEN openSuse-10.2
 - Atlas jobs: XEN SLC4 with LCG middleware
- Software
 - Recent Torque version >= 2.0
 - Moab cluster manager version >=5.0
 - Modifications to LCG software
- Test suite:
 - Moab starts Xen: up to 4 VMs per 4-core host
 - Moab waits: VM starts, OS updated, torque client starts; then submit atlas job
 - Communication between Moab master and slave efficient and stable:

Chechelnitskiy, CHEP07
Others:

- **University of Marburg:**
 - Extension of SGE: XGE
 - Backfilling for short parallel jobs in cluster filled with serial jobs using Virtualization techniques
 - Tested and used on MARC cluster (VTDC06 workshop)

- **University of Lübeck (Bayer et al)**
 - Dynamically installing RunTime Environments
 - Combination with virtualization in early state
 - Used in the ARC community

- **Commercial uses like Amazon Elastic Compute Cloud EC2** (using VMware)
 - ...
Globus Virtual Workspaces

- Other focus:
 - Previous solutions hide virtualization from the user
 - Globus: User encapsulates his environment in a VM and deploys it on remote resources
 - Authorized clients can deploy and manage workspaces on-demand via the GT4 Virtual Workspace Service
 - Currently using Xen

- Very promising techniques as very tight integration into the Middleware
 - Enables a real world-wide running of the same OS
 - The local admins do not have to care about users OS

- Has yet to be tested on large scale (Proof-of-concept comprises 5 nodes)

http://workspace.globus.org/
Administrative tools

- Management of VMs often an issue
- Many tools have emerged
 - Creation of VMs
 - Starting/Pausing/Stopping one/many VMs
 - Managing complete virtual clusters
- Solutions like VMware have some build-in tools
- XEN only provides basic management tools
 - Need to tailor own management tools
Example of a light-weight tool:

- xen-image-manager.py
 - Developed by Owen Synge for his purposes at Desy
- Small and simple python script
- Manages configuration of Xen domains
- Manages snapshotting of domains
- Scriptable Virtualization abstraction
 - Hide Virtualization implementation
 - Could be extended to work with other techniques
- Presents available hosts and images

http://trac.dcache.org/trac.cgi/wiki/manuals/xen-image-manager.py
Grid-Irelands Virtualisation tools

- **GridBuilder**
 - For interactive use
 - Manage VMs config
 - VM creation from templates
 - Web front-end
 http://gridbuilder.sourceforge.net

- **Quattor and Xen**
 - Quattor fabric management suite for OS installation and management

- **Xen support**
 - Describe state of VM host
 - Install VM guest automatically
 - Each service managed by components: Ncm-xen

- **Network bootloader for para-virtualized Xen-VMs**
 - Pypxeboot allows PXE installation of VMs

Childs et. al.
Summary and outlook

- Lots of topics not mentioned
 - KVM (Kernel-based Virtual Machine): Interesting to follow
 - Commercial deals around Xen: XenSource & Citrix, …

- Future of Virtualization in Grid
 - Many theory and proof-of-principle papers
 - Now we need mass-deployment in production systems

- My own appreciation:
 - Virtualization already solved many problems: Consolidation,…
 - Virtualization of Worker Nodes will solve many open CPU and security issues in Grid Computing. Soon!
 - Time to move focus from “CPU virtualization” to “storage virtualization”?

Thanks to all contributors and especially Owen Synge!