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New tools -  social reading

You just need to register (for free) at 

a.nnotate:

Link to a.nnotate the lecture

Social Reading project:
● you can read, comment and ask 

questions to this lecture and support 
material.

● like if you read together with your 
colleagues a book, and mark places, 
which you think are important or which 
are not understandable.

● your comments, questions and remarks 
will be visible to others, they can also 
reply

● your comments, questions and remarks 
will be answered and replied by your 
lecturer

● Please give feedback on this new tool ! 

http://a.nnotate.com/
http://a.nnotate.com/php/pdfnotate.php?d=2015-10-13&c=TYpujHfy&aac=LKzoxbKQfXXf&asig=guest%20
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Outline of the lectures
●  12. Oct Intro to Monte Carlo techniques and structure of matter
●  13. Oct   parton evolution: DGLAP equations
●  26. Oct   DGLAP/BFKL/CCFM: evolution for small x
●  27. Oct   W/Z production in pp and soft gluon resummation
●  16. Nov Multiparton interactions
●  17. Nov Latest LHC results: small x, multiparton interactions,

               QCD in high luminosity phase: Higgs as a gluon trigger
● Exercises
●  14 & 15 Oct
●  28 & 29 Oct
●  18 & 19 Nov
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Inelastic Scattering: QPM 
● Infinite momentum frame:                                with 
● Virtual photon scatters off point-like quark which moves parallel (collinear) to proton, 

with momentum fraction 

● Using DIS variables gives for

● giving  

●

● Using mass shell condition for outgoing quark gives (with                                    )

● compare this with formula for DIS

Ellis,Webber, Stirling,  p 90 ff
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Is F1 and F2 a delta function ?
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Inelastic Scattering QPM
● Simple model with

● BUT structure function is a distribution. 
F2 is a function of x: scaling, no Q2 
dependence

●            is probability to find  q with 
momentum fraction 

● Proton structure function is:

F2(x) = 2xF1(x) =
X
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Parton distribution functions (pdfs)
● fi(»)d»   gives probability that parton i carries momentum fraction between »          

and » + d»  with 0 ≤ » ≤ 1         

● Number of partons i:

● Momentum fraction carried by partons i:

● Define sum-rules for hadron target:

• Number of valence partons

• Momentum carried by partons

• Flavor contents 

From D. Soper hep-ph/9609018
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Picture of the Proton
● Flavor sum rules for proton:

● Momentum sum of quarks:

● Where are the other 50 % of the 
proton's momentum ?

X

q
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Z
dxx¹q(x) » 0:1 [0:42 + 0:2 + 0:06 + 0:03 + 0:01] = 0:1 ¢ 0:72 = 0:072
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Structure functions from HERA

● Proton structure 
function does not 
depend on Q2 for large 
x

● F2 scales ... 

● Quarks are pointlike 
constituents of proton

● BUT things change at 
smaller x..... and 
smaller Q2
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Inelastic Scattering: main results

● F2 scaling at large x

● ~ 50 % gluons

● F2 rise at small x

• How can rising F2 be 
understood ?

• Does rise continue 
forever ?

• What limits F2 ?
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Inelastic Scattering: QPM (I)
● Key factor in QPM explanation is that over a short time in which the hard 

scattering takes place, the quarks behave as if they are free, i.e. no 
interaction between them.

● In the asymptotic limit (Q2 → ∞) the theory should describe quarks as free 
particles

● Equivalent demanding that effective charge in theory should vanish as 
smaller and smaller distances are probed.
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Inelastic Scattering: QPM (II)
● Until 1973 in theories  the reverse was true: because of screening of charge at 

larger distances coupling becomes smaller (QED)

● BREAK-THROUGH by 't Hooft (1972), Gross, Wilczek & Politzer (1973) non-
Abelian theory describing asymptotic behaviour QCD

● As in QED there is screening at large distances by the color charge of quarks 
and gluons, but this is more than compensated by anti-screening (splitting) of 
gluons. Thus for Q2 → ∞  the effective coupling tends to vanish !
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Deeper look to x-section:

separate leptonic from hadronic part
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Separate e° part
● calculate

● define:  

● results

Blackboard
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extract flux of virtual photons

● flux of virtual photons:  different definitions exist....

● QCD is in   
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Higher order corrections to DIS

● lowest order: 

● higher order: 

● factorise electromagnetic vertex or calculate full              process
● use Weizsäcker(Z. Phys 88, 612 (1934)) -Williams (Phys Rev  45, 729 (1934))                                                                                                                               (or 

Equivalent Photon(Budnev Phys Rep C15 , 181 (1974)) ) Approximation:

from: 

obtain: 
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Partonic cross sections

● Flux for virtual photons: 

● x-section with virtual photons:

real photons
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d¾

dt
=

1

16¼

1

ŝ2
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Isolate dominant parts 

in the matrix elements:

region of small kt !!!
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Higher order corrections to DIS

● lowest order: 
● higher order: 

•  What is the dominant part of the x-section ?
• Investigate full x-section of QCDC and BGF
• dominant part comes from small transverse momenta ...
• rewrite x-section in terms of k⟂ 
• use small t limit:

e+ q ! e0 + q0 O(®0s)

e+ q ! e0 + q0 + g; e+ g ! e0 + q + ¹q O(®1s)
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QCDC contribution to F2

again divergency for k⟂ → 0 or Â → 0  

●
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Boson gluon fusion 

● integration over kt generates log, BUT what is the lower limit
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BGF contribution to F2

again divergency for k⟂ → 0 or Â → 0 
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Collinear factorization (part 1)
● bare distributions q0(x) are not measurable (like the bare charges .... )

● collinear singularities are absorbed into this bare distributions at a factorization scale ¹2 

≫ Â2  , defining renormalized distributions   

● now F2 becomes:

●

● separating or factorizing the long distance contributions to structure functions is a 
fundamental property of the theory 

● factorization provides a description for dealing with the logarithmic singularities, there is 
arbitrariness in how the finite (non-logarithmic) parts are treated.
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Splitting functions in lowest order

similarity to EPA...
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From factorization to DGLAP

Blackboard
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Collinear factorization 

● Factorization Theorem in DIS (Collins, Soper, Sterman, (1989) in Pert. QCD, ed. A.H. Mueller, Wold Scientific, Singapore, p1. )

• hard-scattering function            is infrared finite and calculable in pQCD, 
depending only on vector boson V, parton i, and renormalization and 
factorization scales. It is independent of the identity of hadron h.

• pdf                             contains all the infrared sensitivity of cross section, and is 
specific to hadron h, and depends on factorization scale. 

● Generalization: applies to any DIS cross section defined by a sum over hadronic final 
states .... but be careful what it really means....

● explicit factorization theorems exist for:

• diffractive DIS (... see above....) 

• Drell Yan (in hadron hadron collisions)

• single particle inclusive cross sections (fragmentation functions)

see handbook of pQCD, chapter IV, B

C
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Factorization proofs and all that ...

● The problem with Drell-Yan: initial state 
interactions... 

● factorization here does not hold graph-
by-graph but only for all ....
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● About factorization proofs (Wu-Ki Tung, pQCD and the parton structure of the nucleon, 2001, In *Shifman, M. (ed.): At the frontier of particle physics, vol. 2* 

887-971)
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Collinear factorization ....
● So far  considered only “leading twist”

● Factorization theorem (Collins hep-ph/9709499):

● in general:

● NOT covered by factorization theorem.... but contributions can be large ?!?

twist = dimension (spin) of operators in Operator 
Product Expansion (OPE)

Ellis, Webber, Stirling, 123
Roberts 108

n>0   higher twists
         non-leading powers ...

F2(x;Q
2) =

X

i
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Warning on factorisation
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But even this is not the full story...
● factorization breaking in pp → j1 j2 X 

J. Collins, J.W. Qiu hep-ph 0705.2141

● factorization breaking also in tt  production at large pttop   
S. Catani, M. Grazzini, and A. Torre. Transverse-momentum
 resummation for heavy-quark hadropro- duction. arXiv 1408.4564 
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Collinear factorization schemes
● DIS scheme: absorbing all finite contributions        into quark densities, with no 

finite             corrections:

●           scheme: only minimal contributions from the finite parts are absorbed in the 
quark distributions:

● once the scheme is chosen, it MUST be used in all other cross section 
calculations

● higher order corrections will of course depend on the chosen scheme...

● BUT.... there are still other contributions to be included... gluon induced 
processes 
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PDFs in different fact. schemes

● differences between LO and NLO DIS,  MS  scheme in quark and 
gluon densities

● can make significant effects for x-sections
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But back to the 
evolution equation
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Splitting functions (cont'd)
S. Moch, HERA-LHC workshop, June 2004

P (z; ®s) = P (0)(z) +
®s

2¼
P (1)(z) + :::
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Splitting functions (cont'd)
S. Moch, HERA-LHC workshop, June 2004
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NLO contributions to F2(x,Q2)

virtual corrections cancel 
collinear singularity

no collinear singularityvirtual corrections to QPM
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Evolution kernels – splitting fcts
●  some of the splitting functions are also divergent...

●   use plus-distribution to avoid dangerous region:

● divergence cancelled by virtual corrections ... 
● use splitting functions with plus-distribution
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 Conservation rules with DGLAP

● use DGLAP

➔to obtain:
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How to apply these results 
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Applying DGLAP to DIS data ...

● Theory describes measurement over huge range in x and Q2

● Success of theory (DGLAP)
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Extraction of PDFs from DGLAP fits 

● Solve DGLAP equations
● adjust input parameters (starting 

distributions) such that F2 is best 
described

● extract PDFs as fct of x
● then DGLAP gives PDFs at any Q2

● Sum rules are essential to 
constrain starting distributions 
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Solving DGLAP equations ...
● Different methods to solve integro-differential equations

• brute-force (BF) method (M. Miyama, S. Kumano CPC 94 (1996) 185)

• Laguerre method (S. Kumano J.T. Londergan CPC 69 (1992) 373, and L. 
Schoeffel Nucl.Instrum.Meth.A423:439-445,1999)

• Mellin transforms (M. Glueck, E. Reya, A. Vogt Z. Phys. C48 (1990) 471)

• QCDNUM: calculation in a grid in x,Q2 space  (M. Botje  Eur.Phys.J. C14 
(2000) 285-297)

• CTEQ evolution program in x,Q2 space: http://www.phys.psu.edu/~cteq/

• QCDFIT program in x,Q2 space (C. Pascaud, F. Zomer, LAL preprint LAL/94-
02, H1-09/94-404,H1-09/94-376) 

• MC method using Markov chains (S. Jadach, M. Skrzypek hep-ph/0504205) 

• Monte Carlo method from iterative procedure
● brute-force method and MC method are best suited for detailed studies of branching 

processes !!!
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X
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Evolution code in LHAPDF

Can use LHAPDF to evolve starting distribution to any Q2 with
● CTEQ, QCDNUM, and other evolution packages...


