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Canonical Formalisms
= including Hamilton—-Jacobi Theories —
for Classical Fields

H.A. Kastrup

Institut fiir Theor. Physik, RWTH Aachen
61 Aachen, FR Germany

Abstract

By reformulating the variational problem for a given classical

.Lagrangean field theory in the framework of differential forms, one can

show (Lepage) that for m > 2 independent and n > 2 dependent field
variables z® = fa(x) a much larger variety of Legendre transformations
va = aﬂfﬂ(x) =2 ph. L > H exists than those which have been employed in
pﬁysics. Each such theory leads to a Hamilton-Jacobi theory the "wave
fronts" of which are transversal to solutions of the field equations.
Besides the usual (DeDonder-Weyl) canonical theory which employs the
conventional momenta w4 = JL/3v3 the canonical theory of Carathéodory
is of special interest: its Hamilton function is essentially the deter-
minant of the canonical energy-momentum tensor!

IS Introduction

The fascinating developements of gauge and string theories in re-
cent years have strongly drawn attention to geometrical aspects of
field theories, on the classical and the quantum (e.g. anomalies) le-
vels.

There is another very interesting geometrical aspect of field
theories, hovever, which has not yet been exploited by physicists:
E. Cartan's geometrical interpretation of partial differential eqs. and
its applications by the Belgign mathematician Lepage to "canonical"
formalisms for variational Eﬁiﬁr-hagrange field eqs., as a beautiful

generalization of the corresponding theory in mechanics where the

Al A s

Hamiltonian framework provides a "canonical formalism" for the La-
gréngean eqs. of motiont). By a "canonical" formalism I mean the fol-
lowing:

i) Suppose the field eqs. of the system under consideration can be de-
rived as the variational Euler-Lagrange eqs. of an action integral with
the Lagrangean density L, then there exists a Legendre transformation
which maps the "velocities"” Vi (= aﬂfa(x), p=0,0.,m-1;, aa=1,...,n)
of the field variables 2z@ = fa(x) onto a set of "canonical momentum"
variables p# and which transforms the Lagrangean function L(x,z,v) into
a Hamilton function H(x,z,p) the partial derivatives of which generate
a set of 1st order partial diff. eqgs which replace the 2nd order Euler-
Lagrange eqs..

ii) There exists a Hamilton-Jacobi (HJ) part. diff. egs. generated by
the function H, too, the solutions of which describe surfaces ("wave
fronts") “transversal" to the m-dimensional extremals. Given certain
("complete") solutions of the HJ eq. one can construct solutions of the
Euler-Lagrange eqs. by solving algebraic equatioms.

iii) The field variables z2 = fa(x) and the momenta p4# generate a
"symplectic" structure. This part of the theory has not been discussed
by Lépage and a symplectic structure has been established for special
cases only. The existence of a symplectic structure is, of course, of
special interest for the problem of quantizing the field theory under

consideration.

One important result qf Lepage - not yet appfeciated by physi-
cists - 1is that for fields with at least 2 independent and 2 dependent
variables there are other qualitatively different canonical theories
for a given Lagrangean L than the one conventionally employed in phy-
sics. Thus, classical mechanics and the real scalar field cannot be
considered the only generic cases for a canonical framework. The pre-
sent paper summarizes briefly some of the main features of the more
general canonical frameworks in question. More details and examples are

contained in my recent extensive review?).

Let me briefly indicate E. Cartan's general idea, how to inter-

prete partial differential eqs. and their solutions f2(x), a = 1,...,n,
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in a geometrical way:

The solutions z® = fa(x) describe n-dimensional submanifolds I in
Rn+m={(x°,...,xm",z‘,...,z“)]. The part. diff. eqs. 3,£2(x) = ¢f(x,2)
represent conditions on the tangent vectors X, = 3, + 3,£2(x)a,,
p=20,...,m-1 of L. These conditions can be expressed with consider-
able advantages by giving those "dual" 1l-forms w2, a = 1,...,n, which
vannihilate"” the tangent vectors: o® = dz® - @fdx#, wa(X,) = aufalx) -
op = 0. The forms &3, a = 1,...,n, generate an ideal I[w®] in the al-
gebra 4= 4° ® A' @ <c° ® AP & - of exterior forms on RO*D,

Criterium of integrability (Frobemius): If z2 = £2(x) is to be a
solution of the part. diff. egs. aﬁza(x) = ¢ﬁ(x,z), then the functions
¢3(x,z) have to obey the integrability conditions

ap9p + 9BaneR = dued + ®RIn93 .

or [X,X]1=0, or dw® e Ifw?] .

Rank r of a p-form wPeAP: minimal number r of linearly indepen-

dent 1-forms 0, p = 1,...,r, by which wP can be expressed. One has
r >p. If r = p. then wP = 6; A ... A B and oP is called decomposable.
If de, € I[0,...,0¢]1, then the r forms 6, define n+n-r completely in-
tegrable vector fields on which the 8, vanish and which generate
(n+n-r)-dimensional submanifolds in RE'D,

II. Mechanics as an illustration of essential ideas

The introduction of canonical momenta pj in mechanics can be for-
mulated as a problem of constraints: Let L(q,v) be a Lagrangean func-
tion of the 2n variables qd, vi, j = 1,...,n, with the constraint that
vi = @¢J on the extremals. As usual the problem can be dealt with by in-
troducing Lagrangean mnultipliers hj and a new Lagrangean function
L(q,v,h,q) depending on 4n variables:

f‘(qfvrhr&) = L(Q:V) = hj(x;j" Qj) . (1)

As I, does not depend on the time derivative of vi, the Euler-Lagrange

ARG

'

eqs. for these variables are

Allan g A s
avj"'avj hj—o [ J D S (2)

Inserting this expression for h; into L, we obtain

“ ; oL .. ok
L = L{q,v) - vi i + @ =y

If the egs. p; = aL/dqd(q,v) can be solved for the variables vi =
@i{q,p), we can define

H(q,p) = #3(q,p)pj - LD, v=0(a,P)), (3)
so that
fi(q.q,p) = - H(q,p) + &lp; . (4)

The 2n Euler-Lagrange eqgs. for the variables qJ and Pje

d L .
—_— — o — = + s = ;
at aqd  aql by + a;H 0
(5)
L ol -
2 Ly s g
apj QPJ 4 ¢

are the 1st order canonical egs. of Hamiltonian mechanics! The above
considerations can be formulated in a very elegant way in terms of dif-
ferential forms, a procedure which easily can be generalized to the
case of field theories:

The dynamics of the system is determined by the Lagrangean 1-form
@ = L(g,§)dt. Let wi = dq - vidt be the 1-forms which "annihilate" the
tangent vectors ey = 3 - GJa; of the extremals, oiley) = §i - vi = 0.
The 1-forms oJ generate an ideal I[wJ] which vanishes on the extre-
mals. Thus, as far as the extremals are concerned, the form o = Ldt is

only one representative in an equivalence class of 1-forms, the most

general element of which is

Q = Ldt + hjuj 3 (6)
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The coefficient hj can be determined as follows: We have

oL

o = (3;7 - hj] dvd A dt + O(mod I[wi]) . (7)

Thus the form Q is a closed form on the extremals if hj = 3L/av] =: Pj-

Inserting this expression for hJ into Q gives
f = Ldt + pjo) = Ldt + p;(dq) - vidt) = -Hdt + pydq) . (8)

We therefore can implement the Legendre transformation vJ - Pjr L-2>H
by
i) requiring dQ = 0 (mod I[wi]) and

ii) making a change of basis dt - dt, wJ = dqJ in the cotangent space
of RItN  and identifying the resulting coefficient of -dt in Q with the
Hamilton function H and the coefficient of dqJ with the canonical mo-
mentum pj!

The associated canonical eqs. of motion are obtained as fol-
lows’”: A l-parameter variation (homotopy) ¢y, T € [-1,+1] of the vari-
ables qj, Pj and t, with ¢r=o as the identity mapping, induces a varia-
tion of the action integral

A=Iﬂ-—*l\-,-= In =f<p¥(ﬂ), (9)
c(1,2) o7(C(1,2)) C(1,2)
where C(1,2) is a curve {(t,q(t),p(t))] over the interval [t,,t,] in
the (2n+1)-dim. extended phase space {(t,q,p)]. As the extremals C(1,2)
are supposed to make the action integral stationary for arbitrary vari-
ations ¢;, provided certain boundary conditions are observed, we have
the following necessary condition for the extremals

AL = sellite e e 2
Lin & (A = Ko) = | Lin T [g7(2) - 0] fume=0. w0
| €(1,2) c(1,2)

Here L(Y) denotes the Lie derivative with respect to the vector field Y
which'/ generates the curve {(tg;),q(T),p(T)}=[¢7(t,q,p)]. The Lie deri-
vative of an arbitrary exterior form & can be expressed very conveni-

ently'by exterior differentiation d and interior multiplication i(Y) by

D o

a vector field Y:
L(Y)o = i(Y)dw + d(i(Y)w . (11)

(i(Y) is defined as follows: i(Y) maps AP into AP™!, with i(Y)f = O,
i(y)df = Yf, if £ is a function, i(ap)dx” = 8} and i(Y) (0yh0z) =
(i (V) wy)rws + (-1)P o A(i(Y)w,), 1if @z is a p-form. The egs. of motion
are obtained from the equation

L = [ i de + 400 [y g = O (12)
c(1,2) c(1,2)

by observing that it should hold for arbitrary vector fields Y with
¥(t,) = Y(t,) = 0. As such a vector can be generated by the special
vector fields d; = 9/dqJ and a/apd, j = 1,...,n, we obtain the condi-
tions that the l-forms

; (13)
i(a/ap)da = dqd - B gt = o
Pj q ap

should vanish when applied to the tangent vectors a¢ + &jaj + 5ja/apj.
The result is

i AR 8

q“ o apj . ﬁj b an .
The Hamilton-Jacobi eq. can be obtained by the following observation:
Since d@ = 0 on the extramals, it follows (Poincaré's lemma) that lo-
cally a function S(t,q) exists such that

@ = - Hdt + pydql =" ds(t,q) , : (14)

or by comparing coefficients, 3¢S = -H, 3;5 = p;, which is the HJ eq.!

The geometrical interpretation of the solutions S(t,q) is the
following: Consider a region G1*B = (t,q) in RI*R which is "covered"
by extremals, i.e. through each point of Gltn passes exactly one extre-
mal, or, in more modern terms: the extremals q(t) provide a "foliation"
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of gltn by 1-dimensional "leaves". In addition, the n-dimensional wave
fronts S(t,q) = const. provide a foliation of G1t0 by n-dimensional
leaves which are transversal to the 1-dim. extremals!

AN a

\ \
S(t,q) = const.

-t

\

III. Canonical theories for fields in 2 dimensions.

The restrictions to 2 independent variables is convenient, but
without any loss of the essential ideas. The dynamics of the system is

now determined by a Lagrangean 2-form

o = Lix,z,v) dx% A dx!;  x = (x%x'), z = (2',...,z8) ,
(15)
vo= (vl o iovliy) Lo ovh) o
On the extremals we have z3 = f23(x), vj = 3,fa(x). Again the forms
w? = dz? -~ v3dx# vanish on the tangent vectors X, =9, + a,£3a,,
p=20,1, 33 = 3/3z2, of the extremals and generate an ideal I[w?]. Thus
the 2-form « belongs to an equivalence class of 2-forms, with the gene-

ral representative
0 = ot ey b ot Ade? + Ehy o0 A b (16)
= o 5;41) ac.)/\x 2 abh @° A Y,

vhere &0y = 1 = -g;, and the coefficients h{ and h,, = -hy, can be
functions of the variables X, z and v. For dQ we obtain

. [an

i —hg] dvg A dx° A dx' + O(mod I[w®] . (17)
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Thus, the form Q is closed on the extremals if h# = aL/avy = nff  This
result is very similar to the corresponding one in mechanics. What is
nevw, however, is that no restriction are imposed on the coefficients

hyp, without additional requirements! This opens new possibilities for
defining canonical frameworks, provided we have n > 2 (for n = 1 no

hap # 0 exists). Defining dI, = e,,dxV we can write
0 = o + mhed AdE, + 5 by, 00 A ad . (18)

Generalizing the procedure discussed for mechanics we can imple-
ment a Legendre tranformation by replacing «? by dz@a - vgdxﬂ and ex-
ressing 0 with respect to the basis dx°® A dx!, dz2 A dx#, dz@ A dzb.
The result is

Q= - H dx° A dx! + p¥ dz® A dzp + 1

2 h,p dz3 A dzb ,

H=mdvi- bR vEvE-L, (19)

o

ph = nf - Y

ot

v, hHE = gHU p . .

We see that the Legendre transformation L - H, VE - p4 depends on the
choice of the coefficients h,, (the (invariant) Hamilton function H de-
fined here should not be confused with the energy integral [dx!T®,,
where T#, is the energy-momentum tensor and which becomes the Schro-
dinger operator in the corresponding quantum theory). Starting from me-
chanics (m = 1) and the real scalar field (n = 1) the usual choice in
physics is h,, = 0! However, it may be advantagous to have other choi-
ces.

Different choices of h,, may be classified according to the rank
r of the resulting form Q: If Q has rank r, the r 1-forms 8y which ge-
nerate Q determine (2+n-r)-dimensional submanifolds. These submanifolds
are the Hamilton-Jacobi "wave fronts" associated with the canonical
form Q. For the following discussion it is helpful to define the 1-
forms
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abt = L dgh + 78 w3 = -TH, dxV + nf dz° ,
(20)
™, = v} -4L, p=0.1.

Then
Q=akAdL, - L dx® A dx! + % h,, dz2 A dzb .

Let me mention the following 2 important examples with ranks 4 and 2,
respectively:
i) If hgp = 0, then

Q=00 =ak adL, - L dx° A ax® (21)

and we see that Q, has rank 4, because it is generated by the 4 l-forms
dxH, aM.

ii) Probably the most interesting canonical theory is that of Carathé-
odory: It is characterized by the property that @ should have the mini-

mal rank 2:

Q= Q¢ = L a® A at (22)

c L 4 2

implying

H = He = - det (T4) , Beg = L (it - g )
Some properties of the canonical theories associated with the forms @,
and @ are discussed in the next two paragraphs (considerable more ma-
terial is contained in ref. 1)).
Once a choice of the coefficients h,, has been made, and with it a

choice of the momentum functions p4 and the Hamilton function H(x,p.z),
the canonical field eqs. are obtained as follows: The 2-forms

i(a,) d@ =2 A, , i(3/3p4) 48 =: of
have to vanish when applied to X, » X,, where

Xy = 9, + 3,2°(x) 9, vﬂ;bz(x)-z—pz

is a tangent vector x of the 2-dimensional extremal manifold
2 = {(x,z(x).p(x)}.

19

Remark: If d(h,,dz2 A dzb) = 0, then the coefficients h,, do not enter
the field eqs. and the appearence of the term h,, dz3 A dzb in Q@ is
equivalent to adding the "total derivative" (1/2) hi4p vj v to the ori-

gindl Lagrangean L. This happens, for instance, if the h,, are con-
stants.

IV. The canonical theory associated with the (DeDonder-Weyl) form f,.

In this case - the only one usually considered in physics - we
have h,, = 0 and - as already mentioned in the last paragraph - the ba-
sic 2-form is

0o = a# A 4L, - L dx° A dx*.
= - Hdx® A dx! + off dz® A dI, , (23)
ab=Ldx¢ + o3, H=nQvi-L, nf-= 23; s
From
- 42 o
wj = 1[m]dﬂo = @3 A dl‘.“ v
(24)
Aa = 1(3,)d0e = -3gH dx° A dx' - dnf A 4L, ,
one derives the canonical field eqgs.
JH aH
vai= b = - —
it oo T e (25)

which are equivalent to the Euler-Lagrange eqs..

The HJ theory associated with the canonical form Q, is the following:
Since dQo = 0 (mod I[w3]) and since the rank of 0, is 4, we can con-
clude that locally there are 2 functions SH4(x,z), g = 0,1 such that

flo = -H dx° A dx' + nf dz@ A dI,
(26)
= dSH A dr, = ds°(x,t) A dx! + dx° A ds'(x,t) .
Comparing coefficients we get the HJ eq.
a8# = - H(x,z,m , nh=3, sk(x,z) , (27)
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which - obviously - is a generalization of the HJ eq. 3¢5 = -H, pj=d55
in mechanics.

Let me illustrate several features of the HJ eq. (27) by discussing a
special case: n =1, L = (1/2)(vo)? = (1/2)(v,)2 - V(z), where V(z) =
(1/2) p2z2 (KG) or «{l - cos(8z)) (SG) or (1/2)A(z? - a?) 2.

We have
Ll 1y 2
70 = Vo « nl = “Vi H= E (ﬂ ) i 5 (n ) + v(z) ]
and therefore thé HJ eq. takes the form
a 58 + L (0897 - L (9802 4 V(@) = 0. (28)
yl 2 zv 2 Z

This is one part. diff. eq. for two functions SH(x,z). Thus, one can
choose one of them appropriately and then solve the eq. (28) with res-
pect to the other one. This larger freedom reflects somehow the larger
freedom of choosing the initial or boundary conditions for the extre-
mals z = f(x) as solutions of a part. diff. eq..

There is, however, the following essential problem which makes it
much harder to find interesting solutions of the HJ eq. (27): If z =
f(x) is an extremal, then the relations

aof = QzS°(x,z) ¢ a;f = ~azsl(x,z) (29)
can only hold if the integrability condition
9,378° - 358! 935° = -0,0z8 - 3;8° 97S? (30)

is satisfied. Eq. (30) is a part. diff. eq. which has to be solved si-
multaneously with the HJ eq. (27), a task which does not look easy! A
special solution is the following: The seperating ansatz SH(x,z) =
h#(x) + WM(z) leads to the solution

so=-Laxos oz, st= -% Ax!+ kW,
4 (31)

" %
A, o k=comst., of-k?=u?, Wz =5 [dz (- 2viz)

21

of the eqgs. (27) and (30). Extremals associated with the solutions (31)
are: plane waves in the case of the KG-system and l-soliton solutions
in the case of SG- and the z*-systems.

An important question is, of course, what can you do with a solution
SH(x,z), once you found it?

Let me briefly recall some uses of a solution S(t,q) in mechanics:

i) If q(t) is a solution of the lst order egs.

4 = %—j— lg,pj = 3;5(t, @] = @ilt,q)

then it is extremal.

ii) If S(t,q;a) is a solution of the HJ eq. which depends on a constant
a, then

= 35 s
6= = (t,q(t);a)

is a constant of motion for any extremal q(t) for which pPj = 3jS. Noe-
ther's theorem is a special case, where the constant a is a group para-
meter!

iii) Complete integral: if the solution S(t,q;a) depends on n parame-

ters aj, such that

lmell =0

then the solutions qi(t) of the algebraic eqs. d5/da; = bl = conmst.
constitute the most general solution of the canonical eqs. of motion.
iv) The solutions S(t,q) are useful for semi-classical (WKB-) approxi-
mations of the corresponding quantum system.

Very similar applications hold for solutions of HJ eqs. for
fields!). Let me mention here just one interesting example: If
SH(x,z;a) is a solution of the HJ eq. depending on a constant a, then
the current

GH(x) = gs——-" [x, z=f(x);al (32)

a
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is conserved for any extremal fP(x) for which the relations m(x) =
3,S#[x,z=£f(x)) ] hold. This result implies: Let zP = fP(x;a) be a solu-
tion of the field eqs. which depends on a constant a, then the follow-

ing current is conserved:

2
Go(x) = -md 5= £P,
@ (33)
x.l
6 (x) = -mb %; £b 4 %; [axr Li£xo %), 2,8 (=0 ED T

Interesting applications have been discussed by von Rieth3): If, e.g.,
£b(x) is an instanton-solution of an Euclidean Yang-Mills theory, then
one can construct a conserved current for each parameter omn which the

instanton depends!

In mechanics a symplectic structure can be generated by the 1-
fornm
c=pjdgd =0+ HAt (34)

the exterior derivative do = dpj A dqj of which provides the required
symplectic 2-form from which the Poisson brackets may be derived‘).
Similarlys), for field theories a symplectic structure may be generated
by the 2-form

o= mhdza A dEf, = @+ Hdx° Adx (35)

which, when integrated over the space variable x! for x° = const. cor-
responds to the above case in mechanics and provides "equal-time" Pois-
son brackets for fields! Pranslated into quantum theory this leads to
the canonical quantization of fields in the usual manner.

Ves! Carathéodory's canonical theory for fields.

As already mentioned in paragraph III this very intereting and
beautiful canonical theo;y,is determined uniquely by the requirement
that the basic form @ should have the minimal rank 2. Geometrically
this means that the transversal wave fronts have the maximal dimension
n! Carathéodory's canonical theory is defined by the following espres-
sion for the basic form Q:

23
n_lo it Bl o 1 = m
c=pa’nals= e 8° A 8! , oM = -HdxH + ph dz, (36)
which implies
H "-"]‘l(‘l'pﬂ p__lTl-' p TH = gk ya H
c"L u:Pa—L p'ﬂ'a:Tv""aVv"suL (37)

where TH, is the algebraic complement of TPyt
AL TP, = s (TR, LT) L A det(T) .

The relations (37) show that Carathéodory's Hamilton function H¢ is es-
sentially the determinant of the canonical energy-momentum tensor

(T#,), an intuitively appealing property. Furthermore, because

L(T#, = thy, - 8L 1 = L2 = L trithy) + 1(tH) 1,
(38)

He is essentially the characteristic polynomial of the matrix (th)).
This means that H. makes use of all the invariants of this matrix, not
just of its trace like H = nivj = L. As

Ho = md v - L- b H(tA) 1, ¥ = mf 4 0(/L)

we see 'that the conventional Hamilton function mivg - L and the asso-
ciated canonical momenta mk appear as lowest order approximations if we
expand Carathéodory's Hg and p4 in powers of 1/L!

Carathéodory's Legendre transformation and the canonical field
eqs. associated with his theory are quite complicated and I refer again
to ref. 1) for more details.
carathéodory's HJ eq. follows from the relation

as°(x,2) A A5 (x,2) = - 3 0° A 0! (39)
c
which implies the HJ eq.
[(3,S%)1 + He =0, p§ 3,88 = [{3pSP)1 a8% . (40)
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Carathéodory's theory has the following important structural property:
The canonical transformation

%0 — R0 = x0 | x! gl = §l(x,z) , z3 — Fa = za (41)

casts the theory into Hamiltonian "mechanics" on the surfaces S!(x,z) =

const.. This can be seen from the form Q. takes in this frame, namely
Qc = 6° A d&' , 8° = -Hg dx° + pd dz2 , He = T°% , (42)

and from this form of the canonical field eqs. in the new coordinate

system:
pi=0, fl=0, A2mpl B =10,
! 1 . (43)
dza o QHC dpg s 3Hc
dx°  apg | dx° azs

In this coordinate frame one may define a symplectic structure of the
type discussed above in paragraph IV.

Carathéodory's canonical theory has a beautiful geometrical structure,
but it is complicated algebraically, due to its more copplicated Legen-
dre transformation.

A few examples may serve as an illustration®):

i) 2 real scalar field with the Lagrangean

_l g v a a -
L =3 aél gHY Vi vj v(z).

Expressing Hc in terms of the canonical variables p4 - see eqs. (19) or
(37), gives

H = _;_ (P1°Pa + P2'P2) + V(z) (1 - alp)/HB) ,
(44)
a(p) = (p1°P1) (P2°P2) - (Pi°P2)?

Thus, H; is a solution of a cubic equation!
ii) Relativistic string (with thé Schild action’)): From

Lg=v8 vog , voB = v2vl - vgvd, ab=a%p°-3dFp,
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we get
THy = 6My L, He = -Lg . PR = -~
yielding
1 1/3
He = - (¢ Pag 2%6) /",
iii) Non-linear 0(N)-sigma-mode1°).
The Lagrangean is
-, N 2 o2 N A
Lo=22 pit 5 (vl = (W3l = p = L4 0 (28] (45)

Despite the rather complicated Legendre transformation Vi 2 p4 the Ha-
nilton function Hg becomes a simple function of the momenta:

‘ N
He = %023 (027 - (p1)7.
8 a=1
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