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Andover research center of Boston University, where the history
of quantum gravity was presented in two talks, the first
comprising developments up to approximately 1960, and the second,
by Prof. A.Ashketar, devoted to recent progress.
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Canonleal Fonnallsms

- Includlng Hamilton-Jacobi Theories

for CIassical Fields

H.A. Kastrup

Institut für Theor. Physik, RWTHAaehen

61 Aachen, FR Germany

Abstract

By reformulating the variational problem for a given classical
Lagrangean field theory in the framework of differential forms, one can
show (Lepage) that for m ) 2 independent and n) 2 dependent field
variables Z8 = fa(x) a much larger variety of Legendre transformations
va = apfa(x) ~ p~, L ~ H exists than those which have been employed in
physics. Each such theory leads to a Hamilton-Jacobi theory the "wave
fronts" of which are transversal to solutions of the field equations.
Besides the usual (DeDonder-Weyl) canonical theory which employs the
conventional momenta rr~ = aL/av~ the canonical theory of Caratheodory
is of special interest: its Hamilton function is essentially the deter-
minant of the canonical energy-momentum tensor!

~ Introduction
The fascinating developements of gauge and string theories in re-

cent years have strongly drawn attention to geometrical aspects of
field theories, on the classical and the quantum (e.g. anomalies) le-
vels.

There is another very interesting geometrical aspect of field
theories, however, which has not yet been exploited by physicists:
E. Cartan's geometrical interpretation of partial differential eqs. and
its applications by the Belgian mathematician Lepage to "canonical"
formalisms for variational EUi~~-Lagrange field eqs., as a beautiful
generalization of the corresponding theory in mechanics where the

Hamiltonian framework provides a "canonical formalism" for the La-
grangean eqs. of motion I) • By a "canonical" formalism I mean the fol-
lowing:
i) Suppose the.field eqs. of the system under consideration can be de-
rived as the variational Euler-Lagrange eqs. of an action integral with
the Lagra~gean density L, then there exists a Legendre transformation
which maps the "velocities" vj'.(= apfa(x), p = O, •••,m-1, a = 1,•..,n )
of the field variables za = fa(x) onto a set of "canonical momentum"
variables p~ and which transforms the Lagrangean function L(x,z,v) into
a.Hamilton function H(x,z,p) the partial derivatives of which generate
a set of 1st order partial ditf. eqswhich replace the 2nd order Euler-
Lagrange eqs ••
ii) There exists a Hamilton-Jacobi (HJ) part. ditt. eqs. generated by
the function H, too, the solutions of which describe surfaces ("wave
fronts") "transversal" to the m-dimensional extremals. Given certain
e'complete") solutions of the HJ eq. one can construct solutions of the
Euler-Lagrange eqs. by solving algebraic equations.
iii) The field variables za = fa(x) and the momenta p~ generate a
"symplectic" structure. This part of the theory has not been discussed
by Lepage and a symplectic structure has been established for special
cases only. The existence of a symplectic structure is, of course, of
special interest for the problem of quantizing the field theory under
consideration.

One important result of Lepage - not yet appreciated by physi-
cists - is that tor fields with at least 2 independent and 2 dependent
variables there are other qualitatively different canonical theories
for a given Lagrangean L than the one conventionally employed in phy-
sics. Thus, classical mechanics and the real scalar field cannot be
considered the only generic cases for a canonical framework. The pre-
sent paper summarizes briefly some of the main 'features of the more
general canonical frameworks in question. More details and examples are
contained in my recent extensive review1).

Let me briefly indicate E. Cartan's general idea, how to inter-
prete partial differential eqs. and their solutions fa(x), a = 1,•••,n,
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1nserting this expression for hj into L, we obtain

eqs. for these variables arein a geometrical way:
The solutions za = fa(x) describe m-dimensional submanifolds Ern in
Rn+m={(xo, •••,xrn-l,Zl,•••,ZO)}. The part. diff. eqs. a~fa(X) = ~ß(x,z)
represent conditions on the tangent vectors x~ = a~ + a~fa(x)aa'
~ = O, ••• ,m-l of Ern. These conditions can be expressed with consider-
able advantages by giving those "dual" I-forms ",a, a = l.•..,n, 1I'hich
"annihilate" the tangent vectors: ",a= dza - ~ßdx~. ",a(x~)= a~fa(x) -
~ß = o. The forms ",a. a = 1•.••• n, generate an ideal 1[",8] in the al-
gebra A = AO $ Al $ •••$ AP $ ••• of exterior forms on Rm+n.

& _aLavj - äV1 - hJ = 0 1, ...• n (2)j

L
L( ) . aL •J aLq,v - vJ dVj + q dVj

1f the eqs. PJ = dL/dqJ(q,V) can be solved for the variables vj
~j(q,p). we can define

H(q.p) = ~j(q.p)Pj - L(p,v=~(q,p», (3)
criterium of integrability (Frobenius): If za = fa(x) is to be a

solution of the part. diff. eqs. a~za(x) = ~ß(x,z), then the functions
~ß(x,z) have to obey the integrability conditions

so that

L(q,q.p) = - H(q.p) + qJPJ • (4)

all~ß+ ~aab~ß = a~~8 + ~~ab~8 r
I The 2n Euler-Lagrange eqs. for the variables qj and Pj'

or [X~,XV] = 0 , or d",8 E I [",a]

Rank r of a p-form ",PEAP: minimal number r of linearly indepen-
dent I-forms 9p' p = 1,•••,r. by 1I'hich",p can be expressed. One has

!r ) p. If r = p. then ",p = 91 ~ ••• ~ 9p and ",P is called decomposable.
1f d9p E I[91, ••• ,9r], then the r forms 9p define m+n-r completely in-
tegrable vector fields on which the 9p vanish and which generate
(m+n~r)-dimensional submanifolds in Rm+n.

L.&- aLdt dqj - aq1 = Pj + djH
(5)

0,

dH
dPj

.&-
- dPJ

pj 0,

~ Mechanics as an illustration of essential ideas
~he introduction of canonical momenta Pj in mechanics can be for-

mulated as a problem of constraints: Let L(q,v) be a Lagrangean func-
tion of the 2n variables qJ, vJ, j = 1,•••,n, with the constraint that
vJ = q~ on the extremals. As usual the problem can be dealt 1I'ithby in-
troduc~ng Lagrangean multipliers hJ and a new Lagrangean function
L(q,v,h,q) depending on 4n variables:

are the 1st order canonical eqs. of Hamiltonian mechanics! The above
considerations can be formulated in a very elegant way in terms of dif-
ferential forms, a procedure which easily can be generalized to the
case of field theories:
The dynamics of the system is determined by the Lagrangean 1-form
'"= L(q,q)dt. Let ",J= dqJ - vJdt be the I-forms which "annihilate" the
tangent vectors et = dt - eiJajof the extremals, ",J(et)= eiJ- vJ = O.
The 1-forms ",J generate an ideal I[",j] which vanishes on the extre-
mals. Thus, as tar as the extremals are concerned. the form", = Ldt is
only one representative in an equivalence class of I-forms, the most
general element of which is

L(q,v,h,q) = L(q,v) - hJ(!"L.- qJ)
...-

(1) o = Ldt + hJ",j • (6)

As L does not depend on the time derivativeof vJ, the Euler-Lagrange
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The coetficient hj c&n be determined as folIows: We have

41} = (:~J - hj) dvj A dt + O(mod I[",j]) • (7)

a vector field Y:

L(Y)",= i(Y)d",+ d(i(Y)", . (11)

Thus the form I} is a closed form on the extremals if hj = 3Lt3vj =: Pj'
Inserting this expression for hj into n gives

I}= Ldt + Pj",J = Ldt + PJ(dqj - vJdt) = -Hdt + PJdqJ • (8)

We therefore can implement the Legendre transformation vj ~ Pj' L ~ H
by
i) requiring dU = 0 (mod I[",j]) and
ii) making a change of basis dt ~ dt, ",J~ dqj in the cotangent space
of R1+n and identifying the resulting coefficient of -dt in I} with the
Hamilton function Hand the coefficient of dqJ with the canonical mo-
mentum Pjl

(he associated canonical eqs. of motion are obtained as fol-
lows2)!: Al-parameter variation (homotopy) ~T' T E [-1,+1] of the vari-
ables qj, Pj and t, with ~r=o as the identity mapping, induces a varia-
tion qf the action integral

A = J I} ---+ AT = JI} = J ~~(I}), (9)
C(l,2) ~T(C(l,2») C(l,2)

where C(l,2) is a curve {(t,q(t),P(t))} over the interval [t1,t21 in
the (2n+1)-dim. extended phase space {(t,q,P)}. As the extremals C(1,2)
are supposed to make the action integral stationary for arbitrary vari-
ations ~T' provided certain boundary conditions are observed, we have
the following necessary condition for the extremals

lim 1:. (AT - Ao)
~o T

I

= f lim 1:. [~~ ( Il) - I}r = f L (Y) I} = 0 •
~o TC(1,2) C(1,2)

(10)

I
I
}

I
J

I

(i(Y) is defined as folIows: i(Y) maps AP into AP-l, with i(Y)f = 0,
i(Y)df = Yf, if f is a function, i(a~)dxV = 6~ and, i(Y) ("'IA"'2) =
(i(Y)"'I)A",.+ (-l)P "'IA(i(Y)"'2), if "'2 is a p-form. The eqs. of motion
are obtained from the equation

Here L(Y) denotes the Lie derivative with respect to the vector field Y
whichlgenerates the curve {(~0:>--,q(T)'P(T)}={~T(t,q,P)}. The Lie deri-
vative of an arbitrary exterior form", can be expressed very conveni-
ently:'by exterior differentiation d and interior multiplication i (Y) by

f i(Y) dl} + i(Y)1} laC(1,2)
C(l,2)

f L(Y)I}
C(1,2)

o (12)

by observing that it should hold for arbitrary vector fields Y with
Y(t1) = Y(t2) = O. As such a vector can be generated by the special
vector fields 3j• at3qJ and at3pJ, j = 1, •••,n, we obtain the condi-
tions that the 1-forms

i(aj)dl}= -(dpj + 3jHdt) =-ej
(13)

i(3tapj)dl} = dqJ - ~H dt = ",J
apj

should vanish when applied to the tangent vectors at + qJaj + Pjatapj'
The result is

aH=apj Pj !!L3qjqJ

The Hamilton-Jacobi eq. can be obtained by the fOllowing observation:
Since dl}= 0 on the extramals, it follows (Poincare's lemma) that 10-
cally a function S(t,q) exists such that

I} dS(t,q) , (14)- Hdt + PjdqJ

or by comparing coefficients, 3tS = -H, ajS = PJ' which is the HJ eq.!
The geometrical interpretation of the solutions S(t,q) is the

following: Consider a region G1+n = (t,q) in R1+n which is "covered"
by extremals, i.e. through each point of G1+n passes exactly one extre-
mal, 01', in more modern terms: the extremals q(t) provide a "foliation"
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of G1+n by I-dimensional "leaves". In addition, the n-dimensional wave
fronts S(t,q) '"const. provide a foHation of G1+n by n-dimensional
leaves which are transversal to the I-dim. extremals!

[I

I

I

q

Thus, the form n is closed on the extremals if h~ '"aL/avß B rr~. This
result is very similar to the corresponding one in mechanics. What is
new, however, is that no restriction are imposed on the coefficients
hab without additional requirements! This opens new possibilities for
defining canonical frameworks, provided we have n ) 2 (for n '"1 no
hab ~ 0 exists). Defining dE~ '" f~vdxv we can write

q(t) n GJ + 1rr~ GJa~ dE~ + '2 hab GJa~ GJb (18)

Generalizing the procedure discussed for mechanics we can imple-
ment a Legendre tranformation by replacing GJa by dza - vßdx~ and ex-
ressing n with respect to the basis dxO ~ dxl, dza ~ dx~, dza ~ dzb•
The result is

t
n = - H dxo ~ dxl + p~ dza ~ dE~ + ~ hab dza ~ dzb ,

II!.: Canonical theories for fields in 2 dimensions. H '"rr~ v· - 1h~V va Vb - La ~ 2 ab ~ V ' (19)

1

I

1
1

The restrictions to 2 independent variables is convenient, but
withqut any loss of the essential ideas. The dynamics of the system is
now determined by a Lagrangean 2-form

p~ = rr~- h~gv~ ' h~g '" f~v hab •

(15)

We see that the Legendre transformation L ~ H, vß ~ p~ depends on the
choice of the coefficients hab (the (invariant) Hamilton function H de-
fined here should not be confused with the energy integral JdxlToo,
where T~v is the energy-momentum tensor and which becomes the Schrö-
dinger operator in the corresponding quantum theory). Starting from me-
chanics (m '"1) and the real scalar field (n '"1) the usual choice in
physics is hab'" O! However, it may be advantagous to have other choi-
ces.

GJ'"L(x,z,v) dxo ~ dxl; x= (XO,xl), z'" (z ", ••• ,zn),
v '" (v~,•.•,v~,vL •••,v~) •

il
li
I

On the extremals we have za = fa(x), v~ '" apfa(x). Again the forms
GJa'"dza - v~dx~ vanish on the tangent vectors X~ '"a~ ~ a~faaa'
~ '"0,1, aa = a/aza, of the extremals and generate an ideal I[GJa].Thus
the 2-form GJbelongs to an equivalence class of 2-forms, with the gene-
ral representative

dn '" (:~~ -h~) dv~ ~ dxo ~ dxl + O(mod I[GJa] • (17)

Different choices of hab may be classified according to the rank
r of the resulting form 0: If n has rank r, the r I-forms 8p which ge-

nerate n determine (2+n-r)-dimensional submanifolds. These submanifolds
are the Hamilton-Jacobi "wave fronts" associated with the canonical
form o. ror the following discussion it is helpful to define the 1-
forms

i
I

I) n '" GJ+ f~v h~ GJa~ dxv + 1'2 hab GJa~ GJb, (16)

where EOI '"1 = -ElO and t~~coefficients h~ and hab = -hba can be
I /

functions of the variables x, z and v. ror dn we obtain

u
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[,I
[

a~ = L dx~ + n~ ~a = -T~v dxv + n~ dz8

(20) Remark: If d(habdza A dzb) = 0, then the coefficients hab do not enter
the field eqs. and the appearence of the term hab dza A dzb in 0 is
equivalent to adding the "total derivative" (1/2) h~g v~ va to the ori-
ginal Lagrangean L. This happens, for instance, if the hab are con-
stants.

T~v = n~ vß - 6~ L , ~ = 0,1 •

Then

o = a~ A dE~ - L dxo A dx1 + ~ hab dza A dzb

Let me mention the following 2 important examples with ranks 4 and 2,
respectively:
i) If hab = 0, then

IV. The canonical theory associated with the (DeDonder-Weyl) form 00.

In this case - the only one usually considered in physics - we
have hab = 0 and - as already mentioned in the last paragraph - the ba-
sic 2-form is

o = 00 = a~ A dE~ - L dxo A dx1 , (21)

and we see that 00 has rank 4, because it is generated by the 4 1-forms
dx~, a~.
ii) Probably the most interesting canonical theory is that of Carath6-
odory: It is characterized by the property that 0 should have the mini-
mal rank 2:

00 = a~ A dE~ - L dxo A dx'

- H dxo A dx1 + n~ dza A dE~ , (23)

a~ = L dxP + n~ ~a, H n~ v;' - L r n~= ~ava

From

o = Oe = !aO A a1
L '

~;'.=.i [:nP)dOo = ~a A dEp ,(22)
(24)

implying
1 1H = He = - L det (TPv) , h~g = L (n~ ng - nt n~) •

somJ properties of the canonical theories associated with the forms 00

and Oe are discussed in the next two paragraphs (considerable more ma-
terial is contained in ref. 1».
Once a choice of the coefficients hab has been made, and with it a
choice of the momentum functions p~ and the Hamilton function H(x,p,z),
the canonical field eqs. are obtained as foliows: The 2-forms

Aa = i(aa)dOo = -aaH dxo A dx1 - dn~ A dEp ,

one derives the canonical field eqs.
aHv;' = an{: , apn~ = - l.!L (25)aza

which are equivalent to the Euler-Lagrange eqs ••
The HJ theory associated with the canonical form 00 is the following:
Since dOo = 0 (mod I[~a]) and since the rank of 00 is 4, we can con-
clude that locally there are 2 functions SP(x,z), p = 0,1 such that

i(a.) dQ =: x, r i(a/ap~) dO =: ~~
+ n~ dza A dEp (26)

00 = -H dxo A dx1

to vanish when applied to Xo A Xl' where
Xp = a~ + a~za(x)aa ~1~~(x)~

~a

is a tangent vector x of the 2-dimensional extremal manifold
E2 = {<x,z(X),P(X)}.

have
= dS~ A dE~ = dSO(x,t) A dx1 + dxo A dS1 (x,t) •

Comparing coefficients we get the HJ eq.

apsp = - H(x,z,n) , n~ = aa SP(x,z) , (27)
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whichl- obviously - is a generalization of the HJ eq. atS = -H, Pj=ajS
in mechanics.

of the eqs. (27) and (30). Extremals associated with the solutions (31)
are: plane waves in the case of the KG-system and 1-soliton solutions
in the case of SG- and the z4-systems.
An important question is, of'course, what can you do with a solution
S~(x;z), once you found it?
Let me briefly recall some uses of a solution 5(t,q) in mechanics:
i) If q(t) is a solution of the 1st order eqs.

Let me illustrate several features of the HJ eq. (27) by
special case: n = 1, L" (1/2)(vo)' - (1/2)(v,)' - V(z),
(1/2)p2z' (KG) or ~(1 - cos(ßz)) (SG) or (1/2)A(z2 - a2)2.
We have

discussing a
where V(z)

n° '"Vo Tri = -v I , H = ~ (nO)2 - ~ (n')2 + V(z) r

and therefore the HJ eq. takes the form
aH

qj = -, - [q,pj.pj
(lj5(t,q)] <pj(t,q)

a~s~ + ~ (azSO)2 - ~ (azS')2 + V(z) = 0 (28) then it is extremal.
ii) If S(t,q;a) is a solution of the HJ eq. which depends on a constant
a, thenThis is one part. diff. eq. for two functions S~(x,z). Thus, one can

choose one of them appropriately and then solve the eq. (28) with res-
pect to the other one. This larger freedom reflects somehow the larger
freedom of choosing the initial or boundary conditions for the extre-
mals z = fIx) as solutions of a part. diff. eq ••

G = :: (t,q(t);a)

is a constant of motion for any extremal q(t) for which Pj = ajs. Noe-
ther's theorem is a special case, where the constant a is a group para-
meter!
iii) Complete integral: if the solution S(t,q;a) depends on n parame-
ters aj, such that

There is, however, the f,ollowingessential pr~blem which makes it
much harder to find interesting solutions of the HJ eq. (27): If z =
fIx) is an extremal, then the relations

dof = dZSO(X,z) r a,f = -azs' (x,z) (29)

I(d!:~ak)I * 0 ,
can only hold if the integrability condition

d,aZso - azs' a~so = -aodZS' - azso a~s' (30)
then the solutions qj(t) of the algebraic eqs. dS/daj = bj = const.
constitute the most general solution of the canonical eqs. of motion.
iv) The solutions S(t,q) are useful for semi-classical (WKB-) approxi-
mations of ,the corresponding quantum system.

is satisfied. Eq. (30) is apart. diff. eq. which has to be solved si-
multaneously with the HJ eq. (27), a task which does not look easy! A
special solution is the following: The seperating ansatz S~(x,z)
h~{x) + W~{z) leads to the solution

Very similar applications hold for solutions of HJ eqs. for
fields'). Let me mention here just one interesting example: If
S~(x,z;a) is a solution of the HJ eq. depending on a constant a, then
the current

1 .>: 15° = -4 A XO + " W(z) ~ 5'" -4 A x' + k W(z)

A, ", k = const., ,,2- k2 = ~2, W{z) .•~ fdZ
(31)

(A - 2V(z))%
as~ [x. z=f(x);a]aaG~(x) (32)
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1Ile = L aO 1\ a' OP = -HdxP + p~ dZa (36)00 1\ 0' ,

is eonserved for any
.1bSP[x,z=f(x))] hold.,
tion of the field eqs.

extremal fb(X) for whieh the relations n~(x) =
This result implies: Let Zb = fb(x;a) be a solu-
whieh depends on a eonstant a, then the follow- (37)

whieh implies

ing eurrent is eonserved: H - _1 I (TP ) I pP = _1 ifP nP TP - nP va - ,p L
C - L 11' aLP B' 11 - all °ll

GO(x) ° L fb-nb .Ja
where ifpliis the algebraie eomplement of TPp:

(33)

G'(x)
X'

-n~ ~b fb + ~a JdX' L[f(xO,x'), .1pf(xO,x')] •
TP ifPP 11

o{t I (TPII)I I (T) I • det(T) •

The relations (37) show that Caratheodory's Hamilton funetion Heis es-
sentially the determinant of the eanonieal energy-momentum tensor
(TPII),an intuitively appealing property. Furthermore, beeause

Interesting applieations have been diseussed by von Rieth3
): If, e.g.,

fb(X) is an instanton-solution of an Euelidean Yang-Kills theory, then
one ean eonstruet a eonserved eurrent for eaeh parameter on whieh the
instanton depends! L2 - L tr(tPII) + I (tPII)I ,I (TPII= tPIi- oPIIL)I (38)

In meehanies a sympleetie strueture ean be genera ted by the 1- tPIi = n~ v8 '
form (34) He is ess~ntially the eharaeteristie polynomial of the matrix (tPII)·

This means that He makes use of all the invariants of this matrix, not
just of its traee like H = n~~ ~ L. As

u = Pj dqj = 11 + H dt

the exterior derivative du = dpj 1\ dqj of whieh provides the required
sympleetie 2-form from whieh the Poisson braeketsmay be derived4

).

Similarlys), for field theories a sympleetie strueture may be generated
by the 2-form

1 .He = n~ v~ - L - L I (tPII)I , p{t = n{t + O(l/L) ,

we see 'that the eonventional Hamilton funetion n~~,- Land the asso-
ciated eanonieal momenta n~ appear as lowest order approximations if we
expand Caratheodory's He and p~in powers of l/L!

~ = n~ dz8 1\ dEp = 110 + H dxo 1\ dx' (35)

whi~ht when integrated over the spaee variable x' for XO = eonst. eor-
responds to the above ease in meehanics and provides "equal-time" Pois-
son braekets for fields! Translated into quantum theory this leads to
the eanonical quantization of fields in the usual manner.

transformation and the eanonical field
are quite complieated and I refer again

Caratheodory's Legendre
eqs. associated with his theory
to ref. 1) for more details.
Caratheodory's HJ eq. follows from the relation

~ Caratheodory's eanonieal theory for fields. _100 1\ 0'He
(39)dSO(x,z) 1\ dSi(x,z)

As already mentioned in paragraph 111 this very
beautiful eanonieal theo;y/is determined uniquely by
that the basic form 11 should have the minimal rank 2.

intereting and
the requirement

Geometrieally
whieh implies the HJ eq.

this means that the transversal wave fronts have the maximal dimension
n! Caratheodory's eanonical theory is defined by the following espres-
sion for the basic form 11:

I (.1pSII)I + He • 0 , pe .1pSP = I (.JpSII) I .1.SP• (40)
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Caratheodory's theory has the following important struetural property:
The eanonieal transformation

XO ~ XO = xO, x' ~ x' (41)S'(x,z) , z· ~ z· = z·

easts the theory into Hamiltonian "meehanies" onthe surfaees S'(x,z) =
eonst •• This ean be seen from the form Oe takes in this frame, namely

Oe = 0° 1\ dx' r 0° = -He dxO + p~ dz· , He = TO ° , (42)

and from this form of the eanonieal field eqs. in the new eoordinate
system:

ß! = 0, fr! = 0, tT~ = p~, He = TOo,

dz. aHe dp~ = _ aHe
dxo = aßg r dxo aza

(43)

In this eoordinate frame one may define a sympleetie strueture of the
type dise~ssed above in paragraph IV.
Caratheod~ry's eanonieal theory has a beautiful geometrieal strueture,
but it is!eomplieated algebraieally, due to its more eomplieated Legen-
dre transformation.
A few examples may serve as an illustration<):
i) 2 real sealar field with the Lagrangean

L = 1 f gPU va v~ - V(z).
2 a=' P

Expressing He in terms of the eanonieal variables p~ - see eqs. (19) or
(37), gives

1He = i (p,'Pa + Pa' Pa) + V(z) (1 - A(p)/H~)
(44)

A(p) = (p,'p,) (Pa'Pa) - (p,'Pa)'

Thus, .He is a solution of a eubie equation!
ii) Relativistie string (with tile/Schild action 7»: From

Ls = vaß vaß, vaß = v~ v~ - v~ v~, a'b = aO'bo - t·t ,
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we get

TPu öPv L , He = -Ls , p~ = -7T~ ,

yielding

He = - (116 Paß paß) '13
•

iii) Non-linear O(N)-sigma-modeP).
The Lagrangean is

Na.
L = 2 p-' L (v8) - (vr! r

8=1

N
P = 1 + L (Z8)'

8=1
(45)

Despite the rather eomplieated Legendre transformation v~ ~ p~ the Ha-
milton function He becomes a simple funetion of the momenta:

1 N 2 2He = '8 p' J, (p~) - (p!) •
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