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Abstract:
By reformulating the variational problem for a given classical Lagrangian field theory in the framework of differential forms, one can show

(Lepage) that for m  2 independent and for n  2 dependent (field) variables z� = f~(x)a much wider variety of Legendre transformations

= a~f~(x)�~p~,L �* H, exists than has been employed in physics. The different canonical theories for a given Lagrangian can be classified
according to the rank of the corresponding basic canonical rn-form.

Each such canonical theory leads to a Hamilton�Jacobi theory, the �wave fronts� of which are transversal to solutions of the field equations.
Two canonical theories are discussed in more detail: The one by DeDonder and Weyl which employs the conventional canonical momenta

p~= aL/avg and the more sophisticated one by Carathéodory, the Hi theory of which is more intimately related to that of mechanics than the
conventional one.

Generalizing results from mechanics one can show that each solution of a HJ equation which depends on a parameter generates a conserved
current for those extremals which are transversal to that wave front.

The geometrically very rich, but algebraically rather complicated canonical formalism of Caratheodory provides interesting new approaches for
the �qualitative� analysis of classical field theories. For instance: solutions of the field equations which give a vanishing Lagrangian density L are

associated with singularities in the transversality relations between wave fronts and extremals.
A number of examples (strings, gauge theories etc.) illustrates the wealth of possible physical applications of these more general canonical

formalisms for field theories, which, up to now, have been ignored almost completely by physicists.

Introduction

Some years ago, when I tried to understand the papers by Dashen, Hasslacher and Neveu [1974,I, II]
on semiclassical approximations in quantum field theories, I started wondering, why Hamilton�Jacobi
(= HJ) theories for classical fields were never used in ~hysics and whether they did exist at all. Looking
up the mathematical literature I discovered:
Not only did a wealth of papers on HJ theories for fields exist, but in addition there were important
results concerning the canonical formulation of classical field theories which have been completely
ignored by the general physics community! In fact, whereas the mathematical theory of the calculus of
variations for systems with one independent variable has had a very strong influence on the develop-
ment of mechanics, quantum mechanics and quantum field theory, the mathematical papers on the
calculus of variations for systems with several independent variables have left almost no traces within
the modern developments of field theories in physics.

One of the main reasons for this development is, of course, that physicists to a large extent consider
field theories as (quantum) mechanical systems with an infinite number of degrees of freedom. This
approach, which has been extremely fruitful and which is, of course, completely justified from a very
appealing point of view of physics and functional analysis, for a long time had the tendency to ignore
the rich geometrical structure of classical solutions of partial differential equations which serve as the
starting point for a �corresponding� quantum field theory (this remark does not apply to General
Relativity). However, during the last years, in view of the successes of gauge theories in particle physics,
we have learnt again to appreciate the geometrical aspects of field theories.
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I am convinced that essential parts of those geometrical properties still have to be discovered and
applied by physicists and that the large variety of canonical theories with their associated HJ equations
for a given Lagrangian field theory does represent such an undiscovered part and it is the aim of this
article to draw attention to these aspects and to illustrate them by physical examples.*

Volterra [18901was the first to generalize the concepts which Hamilton and Jacobi had developed for
optics and mechanics to a field theory with 2 independent variables and to write down a �HJ� equation
for such a system. The subject was taken up by Fréchet [1905]who treated the case of m independent
and n dependent variables and who, in addition, generalized another important property of a solution
S(t, q), q = (q1,. . . , q�~)of a HJ equation in mechanics [see, e.g. Whittaker, 1959, p. 324]: Let S(t, q; a)
be a solution which depends on a parameter a. Then the quantity G = aS/aa is a constant of motion
�along� an extremal with canonical coordinates (q1(t),. . . , q�~(t),p

1(t),. . . ,p~(t)),for which the
relationsp1(t) = a1S(t, q(t); a), ö~,:= ô/öq�, hold. These Hi constants of motion constitute a larger class of
conserved quantities than those obtained from Noether�s theorem [Noether, 1918], which is a special
case of Jacobi�s one (for details see section 4.2)! Whereas Noether�s theorem provides conserved
quantities for any solution of the equations of motion, Jacobi�s theorem asserts the possibility of
additional constants of motion for special solutions which depend on certain parameters not associated
with a general invariance group of the Lagrangian.

In the case of field theories a solution of the HJ equation depending on a parameter provides a
conserved current G~(x), ~ = 1,. . . , m, 9~G~= 0 associated with a solution of the field equations
which is �transversal� to that Hi �wave front� (more details below).

The work of Volterra and Fréchet was summarized in 1911 by the Belgian mathematician DeDonder
[1911].

In his famous address during the 2nd international congress of mathematicians in 1900 in Paris
Hilbert had discussed the importance of a certain path-independent integral�which now bears his
name�for the calculus of variations with one independent variable [Hubert, 1900, 1906]. A few years
later Mayer [1904, 1906] recognized and analyzed the important relationship of Hilbert�s independent
integral to the theory of Hamilton and Jacobi. In the wake of this development DeDonder in 1913
introduced an independent integral and an associated �HJ� equation for variational problems with
several independent variables. In 1930 DeDonder published a monograph on the subject. This theory
was discussed and analyzed further by Weyl in 1934/35 and since then bears the name of DeDonder and
Weyl (DW). Its essential features are as follows:

Let L(x, z, v) be the Lagrangian (density) of a system, where x = (x
1, . . . , xm) are the independent

variables, z = (z1, . . ., zr�) the n variables which become dependent variables (functions) Z�~= fa(x) on
the extremals and v = (vi,..., v~,..., v~,)the variables which become v~= afa(x) ~ = 1,..., m,
a = 1, . . . , n on the extremals. The canonical momenta in the DW theory are defined by ~ :=

and the invariant (!) Hamilton function is the Legendre transform H = n-~v~� L. The DWHJ equation
is the 1st order partial differential equation

8~S~(x,z)+ H(x, z, ~ = aaS~)= 0, (1,1)

= aas� (x,z):= aS~/aza, (1,2)

for the m functions S~(x,z), ~ = 1,, . . , m.

If S~�(x,z; a), ~ = 1,. . ., m, are solutions of eq. (1,1)�in the following we shall speak of the
* I call a dynamical system a Lagrangian one, if its evolution equations can be derived from a Lagrangian function (density).
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�solution S~(x,z)� � and z� = fb(x) b = 1,. . . , n, solutions of the Euler�Lagrange equations for which
the relations 1r~(x)= ôbS~�(x,z = f(x); a) hold, then the components G~(x)of the conserved current
mentioned above are given by G�~(x) = (aS~/8a)(x, z = f(x)).

In mechanics one has the important notion of a �complete� integral: Suppose there exists a solution
S(t, q; a) of the Hi equation which depends on n constants a1, j = 1,. . . , n, such that
det(8

2S/dq�t9ak) ~ 0, then the solutions q�(t) = f1(t; a, b) of the n equations (ÔS/3a
1)(t, q, a) = b� const.

are extremals, with p1(t) = c91S(t, q = f(t; a, b), a). As these functions depend on 2n arbitrary
parameters, they constitute the most general solution of the equations of motion.

Similarly, suppose a solution Sr*(x, z; a) of eq. (1,1) depends on mn parameters a~,v= 1,..., m,
c = 1, . . ., n, then S~�(x,z; a) is called a �complete� integral, if det(a

2S~/az�8a~) 0. It is then again
possible to construct solutions of the Euler�Lagrange equations if certain integrability conditions �

which do not exist in mechanics � are satisfied: If S~(x, z) is a solution of the DWHJ eq. (1,1), then we
have, according to eqs. (1,2), ir~= I9aS�~(x, z) =: tJ�~(x, z). Performing the Legrendre transformation

�~ v~,we obtain �slope� functions v~= 4~(x,z) which can only be identified with derivatives
af°(x) of functions f = f~(x), if the integrability conditions

a._~ a+o a b.. a_~ a ~ a b
(�b(P~~ ~ çc~

5~

are fulfilled. These conditions impose severe restrictions on the solutions S~(x, z) which in general are
harder to solve than the DWHJ eq. (1,1) itself.

There is another problem associated with the DW �wave fronts� S~�(x, z) which does not exist in
mechanics: For a mechanical system with n degrees of freedom the wave fronts, transversal to a family
of extremals, are given by S(t, q) = = const. and are therefore n-dimensional in general. This is no longer
the case for the DWHJ theory where the transversal wave fronts for n, m  2 are given by the equations
Se~(x,z) = o~�= const., x/L = const., ~ = 1,. . . , m, that is to say, the DWHJ wave fronts in general are
(n � m)-dimensional.

This last �defect� does not exist in the HJ theory for fields invented by Carathéodory in 1929. In this
theory the wave fronts transversal to the extremals are n-dimensional as in mechanics. However,
Carathéodory�s �Legendre�-transformation v~�*p~,L-+ H~is more complicated:

PI~ (�L)�~f~ 1T~., H~= (�L)
1m T~, (1,3)

where

T~=ir~v~�~L, T~T~=~ITl, T!:=det(T~).

The associated HJ equation is

+ H~(x,z, p) 0, (1,4)

t9pS�~p~a� (c9~S~)l8aS1� = 0. (1,5)

Because of its highly nonlinear structure Carathéodory�s canonical theory for fields does not have much
appeal as regards calculational simplicity! However, it has a number of very intriguing structural
properties which deserve attention:
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(i) For n  2 it is the only canonical theory for fields which allows for the same transversality
structure of extremals and wave fronts as one encounters in mechanics.

(ii) Its Hamilton function H~is essentially the determinant of the canonical energy-momentum
tensor (Ti), a property which is intuitively very appealing. Notice, that for m = 1 the expressions (1,3�5)
reduce to those in mechanics!

(iii) Given m � 1 functions S2(x, z),. . . , Stm (x, z) which obey the �transversality� conditions (1,5), the
canonical transformation xt ~3 = x1, x�2 �~~ S~�(x,z), ~i= 2, . .. , m, Z� ~ ~a Z°, has the follow-
ing properties: In the new frame the Hamilton function H~is given by H~= fl and the canonical field
equations take the �mechanical� form

- - ~ ~-~--- = =0 - = 2 m

d~�� � dI� a~� Pa ,

~lSUC~0, l3~t9a~~,

i.e. on the surfaces S~(x, z) const., ~i = 2, . . -, m, the dynamical �flow� of the fields reduces to a
�mechanical� one. I consider this property of Carathéodory�s canonical theory to be of great im-
portance. It was discovered by E. Holder [19391.

(iv) At a point (x, z) E R�~~the tangent space of an extremal in general will be spanned by m
linearly independent tangent vectors and the tangent space of a transversal wave front by n linearly
independent tangent vectors. The necessary and sufficient condition for these m + n tangent vectors to
be linearly independent is H~L 0. Thus, for solutions of the field equations which have L = 0 the
transversality properties of extremals and wave fronts become singular (caustics!). The first order
condition L = 0 can have quite surprising physical implications [Kastrup, 1981].

(v) If one expands the canonical quantities (1,3) in powers of (ilL), then one gets

= ~ + O(1IL), H~= HDW + O(1IL), HDW = ~ v~� L,

which shows that the standard canonical framework used in physics can be obtained from Cara-
théodory�s one as the zero order approximation of a polynomial expansion in the variable (i/L)!

These examples show that Carathéodory�s canonical theory for fields has very interesting elements
concerning the qualitative dynamical and geometrical aspects of a given field theory.

In a series of important papers the Belgian mathematician Lepage [1936a,b, 1941, 1942a, b] showed
that the theories of DeDonder�Weyl and Carathéodory are just special cases in a general framework of
possible canonical theories for systems which have at least 2 independent and 2 dependent variables.
The backbone of Lepage�s analysis is E. Cartan�s geometrical interpretation of partial differential
equations and his use of differential forms in this context: According to Cartan the solutions Z�~= fa(x)

of partial differential equations define rn-dimensional submanifolds in an (m + n)-dimensional space. The
partial differential equations constitute conditions on the tangent spaces of these submanifolds,
conditions which conveniently can be expressed in terms of those differential forms which vanish on the
tangent spaces of the submanifolds.

By consequently exploiting the properties of differential forms Lepage was able to identify essential
features of the Legendre transformation and to find, in a sense, the most general canonical framework
(canonical momenta, Hamilton function, Hi equation etc.) for a given field theory defined by a
Lagrangian. The canonical framework usually employed in physics is that of DeDonder�Weyl. This
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framework is, however, unsatisfactory as far as the transversality properties of extremals and wave
fronts are concerned (see above), a disease which does not exist in the algebraically more complicated
theory of Carathéodory.

As Lepage�s very rich and interesting canonical framework � including HJ theories for fields � is not
generally known, it is the main purpose of this article to draw attention to it and to indicate by physical
examples how this more general framework may become useful for physics.

Chapter 1 collects those essential properties of differential forms which are being used later. The
most important concepts here are the �rank� and �class� of a differential p-form, because these
properties are crucial for the dimension of the integral submanifolds associated with a given p-form.

Chapter 2 recalls � in the language to be used later � a number of concepts from mechanics which are
to be generalized to field theories. This chapter is purely pedagogical.

Chapter 3 introduces the main ideas of Lepage in the case of 2 independent and n dependent
variables. 2 independent variables suffice in order to discuss the essential features of Lepage�s general
canonical framework: The generalized Legendre transformation, the replacement of the second order
Euler�Lagrange equations by first order canonical equations, the classification of different canonical
theories according to the rank of the basic canonical 2-form etc. Several of these concepts are illustrated
by an application to 2-dimensional E-dynamics.

Chapter 4 discusses the concept of HJ theories for fields, their integrability problems, the questions
associated with the transversality properties of extremals and wave fronts, some of the main features of
the DWHJ theory: conserved currents associated with a parameter-dependent solution S5� (x, z; a), the
concept of a complete integral and how to construct solutions of the field equations from it.
Furthermore, the problem how to find transversal wave fronts for a given extremal or for an n-parameter
family of extremals is treated.

Chapter 5 contains a detailed discussion of Caratheodory�s canonical theory of fields. Illustrating
examples are E-dynamics in 2 dimensions, the relativistic string and scalar field theories.

Chapter 6 indicates how the results in chapters 3�5 for 2 independent variables are to be generalized
to m independent ones.

Chapter 7 discusses canonical properties, including HJ equations, for systems which are invariant
under reparametrization: strings, membranes etc.

Chapter 8 deals with situations where the transversality properties of extremals and wave fronts
become singular: caustics appear. It turns out that the solutions of the equations of motion which have a
vanishing Lagrangian (density), L = 0, have a special mathematical and physical significance. This can
be seen from examples in mechanics as well as in field theories.

The final chapter 9 lists a number of open problems � of which there are many � and tries to
speculate, what directions of future research in this field may be useful and of interest for physics.

The present paper extends, improves and, in a few instances, corrects previous short communications
on the same subject [Kastrup, 1977�82].

1. Some elements of differential geometry

This introductory chapter is intended to familiarize the interested reader with some of the basic
notions of modern differential geometry, because these concepts are byfar the most appropriate ones in
order to describe the canonical theories for fields discussed in the following chapters. The reason is the
following: The dynamics of a physical system with m independent variables x5�, ~ = 1,. . . , m, and n
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dependent variables Z�(X), a = 1, . . . , n, is generally determined by a system of differential equations
for the functions Z�~(X).In E. Cartan�s geometrical interpretation of differential equations [E. Cartan,
1945; Kähler, 1934; Kuranishi 1957, 1967; Sternberg, 1964; Hermann, 1965; Godbillon, 1969; Slebod-
zit�iski, 1970; Dieudonné IV, 1974; Choquet-Bruhat et al., 1977; Estabrook, 1980] the solutions Za(X)

define rn-dimensional submanifolds in an (1 = m + n)-dimensional space and the differential equations
constitute conditions on the tangent spaces of these submanifolds, conditions which most conveniently
can be expressed in terms of differential forms.

This geometrical approach towards the problem of solving ordinary and partial differential equations
turns out to be extremely fruitful for generalizing the canonical formulation of mechanics to field
theories, with some surprises in store!

Those who are already familiar with basic concepts of modern differential geometry (manifolds,
vector fields, differential forms, exterior differentiation, interior product of forms and vector fields, Lie
derivatives, Poincaré�s lemma, Stokes� theorem, differential systems and ideals, Frobenius� integrability
theorem, integral submanifolds, rank and class of a differential form of degree p etc.) can skip this
chapter.

This is not a systematic introduction to the concepts just mentioned. Systematic treatments,
containing proofs etc., can be found in the literature discussed in the bibliographic notes at the end of
this chapter and in the text mentioned above.

in order to keep the following account as simple as possible I shall mainly use �local� formulations

of the notions to be discussed, i.e. I shall use the language of local coordinate frames.

1.1. Manifolds and their tangent vectors

Loosely speaking, an 1-dimensional manifold M� with points p is locally in one-to-one correspondence

to a neighbourhood U of an Euclidean space R1 with coordinates y� (p), A = 1,. . ., l. If we cover the
manifold with an �atlas� of fixed (partially overlapping) coordinate systems, we can express most
properties of M� in terms of local coordinates. M� is �differentiable�, if on any overlap U flU ~ 0 the
coordinate change y(p)�~9(p) is differentiable.

Let C(t): I �~Mt, I = [t
1, t2], t2> t1, be a smooth curve {p(t)} C M

t, y(t) y(p(t)) and {f(y)} a set of
smooth real-valued (test-) functions, then the map C�(t): {f}�+ R, defined by

~ . � df(y(t)) � f . � A 11~ ~,t)J~j)� dt � dt Aj~y~�y(t), aA .� 3/dy

is called a tangent vector to C at y(t). If we take the special curves CA: t = y�~�,then C1(t) = t9A and we see
from eq. (1,1) that the differential operator eA = 8A, A 1,. . ., l, can be interpreted as a basis of an
i-dimensional vector space T~(~)(M1)of tangent vectors at p E M�, or, locally, at y(p). The union
UPEM�TY~,,)=T(M�) of all tangent spaces is called the tangent bundle of Mt. A vector field Y a�(y)aA

is a mapping which assigns to each point p E M� a tangent vector Y~E T~(~).The vector field Y is
continuous, smooth etc. if the functions a� (y) are continuous, smooth etc. An integral curve C~(Y) of
the vector field Y at y(po) = y

0 is a curve with coordinates y(t) such that

dy�/dt�a�(y), y�(O)=y~ A=1,...,l. (1,2)

Thus, each vector field on M� defines a system of ordinary differential equations (1,2) of first order. It
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follows from the theory of differential equations that locally there are unique solutions ~yo) = y(t),

~r=o(Yo)= yo for any given Yo and the solutions p,(y0) can be interpreted as a 1-parameter group of local
transformations of Mt into itself:

Yo~yr = ~t(Yo), ~~+~(yo)= ~[~(yo)], ~o(yo)= y0. (1,3)

The vector field Y is said to define a �flow� ~t(yo) On M�.
Example:
For a mechanical system with phase space Mt = P

2�, coordinates y = (q�,. . . qfl, Pi,. . . ,p,,) and
Hamilton function H(q, p) the integral curves cø~(q

0,p°)of the vector field

8H8 3H8
- � -ap, aq~ 9q� i9p1

define the Hamiltonian �flow� of the system through the (initial) point (qo, p°)E P
2~.

On the other hand: Each 1-parameter local transformation group ~ y �~q~(y)�induces� a vector
field Y on Mt by

.1
Yf(y) = hm � [f(~

1(y)) � f(y)1 . (1,4)
t�*o t

Example:
The dilatations y �~ e�y induce the vector field Y = y�a~.

If Y(l) = a(l)(y)r9A, Y(2) = a~)(y)9A,are two vector fields, then their commutator

[~V t� 1.( A K A
1(1), 1(2)] � ~a(s)uAa(2)� a(2)uAa(l))UK

is again a vector field.

1.2. Cotangent vectors and differential forms

Let T~(M�)be the vector space dual to the tangent space T~,i.e. T~consists of all linear mappings of
T~into the real numbers. The basis of T~dual to 8K is denoted by dy�, i.e. dy�(8K) = ~ (=Kronecker�s
symbol) and the elements of T~are called �cotangent vectors�. The union T*(Ml) of all cotangent spaces
T~forms the cotangent bundle.

The objects �dual� to the vector fields are the �1-forms� or �Pfaffian forms� w b~(,y)dy�which
assign to each y an element of T~and which, applied to a vector field Y = a� (y) 8~,give the real
function w(Y)= b~(y)a�(y).

A differential form of degree p or, briefly, a p-form w� E A� is a multilinear mapping of degree p
which maps any p vector fields Y1,..., Y~at y into the real numbers, w�(Y1,..., Y~)E R and which is
completely antisymmetric in its arguments, e.g. w

2(Y,, Y
2) = �w

2(Y
2, Y1). (The letter �p� here has, of

course, nothing to do with the points p of the manifold M�, for which we used it before and which we
shall denote by y from now on.)

The (linear) space A� of all p-forms a,� at y can be interpreted as the pth exterior power of the
cotangent space T�~,where exterior multiplication is defined as follows:
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If w~E A� and w2E A�, their exterior (�wedge�) product w1 A w2E A~~�is given by

w1 A w2(Y1,..., Yp± q)= ~ (sgn u) wl(Y~(s),...,Y~(~))w2(Y~(~± s),...,Y~(p+q)), (1,6)
p.q. ,rES+

where
5p+q is the set of all permutations a- of (1,. . - �p + q). The wedge product (1,6) has the properties

w
1Aw2(�1)��w2Awi, (f~i)Aw2=f(wsAw2),

(w1 A w2) A w3 = w1 A (w2 A w3). (1,7)

One has A ~= T~and if, e.g., w1 = bY~�dy�, j = 1, 2, then

(O~A ~2 = b~b~dy� A dy� = ~ (b~b~� b~b~2)dy� A dy�

= ~(bS,~b~
2~� b~b�~)dy� A dy�.

A basis of A� is {dy�� A - A dy~�,A
1 <. . . <A,,} and therefore the dimension of A�°is (j,). An element

a,P of A� has the representation
= ~ w~~(y)dy�� A�~~A dy��,

AI<...<Ap

or, if the functions w~1.~~(y)are completely antisymmetric in their indices A1, . . . , A,,:

= w~.~(y)dy�� A A dy~.

1.3. Maps of manifolds and of their tangent and cotangent spaces

Let N� be a k-dimensional manifold with local coordinates a�, K = 1, . .. , k. A map ~: M� �~N�,
U� = çr�(y) induces a map of tangent spaces, such that for a function g(u) at u = ço(y) and for
V~ET~(M

t):

(1,8)

or, with V~= v�0~,

[~*(VY)U=~(~)]g(u) = V~[g(~(y))].

If Y = a� (y)8~is a vector field, it follows that

[~*(Y)~=~(~)I g(u) = a�(y) (8~�/8y��)8g(u)/0u� . (1,9)

The rh. side of eq. (1,9) defines a vector field on N� ill the coordinates y can be expressed as functions
of u, i.e. if the map ~: M� ~ N� is one-to-one.
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Whereas the tangent map ~*: T~(M�)_*T~~.,)(N�) has the same �direction� as ~ itself, the map ~
induces a map ca� of cotangent spaces T~ (~)(N�)�*T~(M)which �pulls� forms on N� �back� to M�:

Let w be an element of A~,,(y)(N�~),then (~p*a,)EA~(M�)is defined by

(ca*a,)(Yi ..., Y~)= W~(Y)(ca~(Yl),... , ~(Y,,)). (1,10)

For instance, if w = WK(u)du�, then p�a, = WK(U = ca(y))8~~�dy�. In addition one has çc,*(ws A w
2)=

(p*(a,i) A ~*(a,~) Notice that the cotangent map ca�� does not require the map ~ to be one-to-one. In

this sense differential forms behave more �decent� under maps than vector fields!

1.4. Operations on differential forms

The differential df of a function f(y) is a 1-form with the property df(Y) = Yf(y), Y = a�(y) 0~.We
have df(8~)= 8~f,dy�(ô~)= 8~y�= 8~and therefore df = t9~fdy��.

The following operations with differential forms are important:
(i) Exterior differentiation:
This is a mapping d: A��*A�~,with the properties:
(a) If f(y) E A°is a function, then df is the differential of f.
(b) If w1 is a p-form, then

d(wi A w2) = dw1 A w2+ (�1)�w1 A dw2.

(c) d(dw) = 0 for all forms w.

In local coordinates: If

A�~ Ady~,

then

dw = (dw~,.~,(y))A dy�� A .~ A dy~. (1,11)

If w is a 1-form, then

dw(Y1, Y2) Y,w(Y2)- Y2co(Yi)�w([Yi, Y21). (1,12)

The representation (1,11) shows that dp *(a,) = ~ *(~a,) i.e. exterior differentiation commutes with
mappings! (For a 0-form (=function) g(u) one defines (~*g)(y)= g(ca(y)).)

If a p-form w has the representation a, = d ~,where @ is a (p � 1)-form, then w is called �exact�. If,
on the other hand, dw = 0, w is called �closed�. In general closed forms are not exact! The difference
plays an important role in algebraic topology [see, e.g., Singer and Thorpe, 1976].

Locally, however, one has Poincaré�s famous lemma: If dw = 0 in a region C M� which is contractible
into each point of that region, then there is a (p � 1)-form t9, such that w = df9. The best known
application in physics is the following: Let
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F = ~ dx� A dx�, F~=

be the 2-form defined by the electromagnetic fields (F01, F02, F03) = (E
1, E2, E3) = E(x), (F

23, F31, F12) =

�(B
1, B2, B3) = �B(x). If dF = 0 in a contractible region of Minkowski space, i.e. if the homogeneous

Maxwell equations hold there, then, according to Poincaré�s lemma, F = dA, A = A,~(x)dx�. In the
Aharonov�Bohm experiment, however, not all regions in question are contractible and the potential
form A of F can be defined only locally [Aharonov and Bohm, 1959; Wu and Yang, 1975].

(ii) Interior multiplication of a form by a vector field Y:
This operation is a mapping i(Y): A� -~ A~1,defined by

i(Y)f=0, i(Y)df= Yf,

i(Y)(w
1Aw2)=(i(Y)w,)Aw2+(�1)�w1A(i(Y)w2), w1EA�.

If w is a p-form, then i(Y)w is a (p � 1)-form

[i(Y) w](Y1,..., Y,,i) = w(Y, Yi,..., Y~~1). (1,13)

Example:

i(8~)F= ~F,~,(dx�(8k) dx~� dx~dx~(8~))

= ~ dxv.

(iii) Lie derivative of a form:
Whereas exterior differentiation d maps A� into A~~�and interior multiplication i(Y) maps A� into

A~
1,the Lie derivative L(Y) of forms with respect to a vector field Y,

L(Y)= i(Y)d+di(Y) (1,14)

maps A� into A �. L( Y) has the properties

L(Y)f= Yf, L(Y)df=d(Yf).

As flP can be generated locally by functionsf and their differentials df, the following properties of L(Y)
can be proven by applications to f and df

L(Y)d=dL(Y), L(Y
5+ Y2)=L(Y1)+L(Y2),

L(fY)=fL(Y)+dfA i(Y), [L(Y1),L(Y2)] = L([Y1, Y2]) (1,15)

[L(Y5), i(Y2)] = i([Y1, Y2]) .

If

w = ~ dy�� A-~~A dy��
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then

L(0~)w = (0~w~,.~,(y))dy�� A - A dy�~.

The Lie derivative L(Y) of a form w with respect to a vector field Y can be defined in a different
way: Let ca~be the 1-parameter local transformation group generated by Y, then

L(Y)wz*z1in~(ca~�w~a,). (1,16)

In order to prove the equivalence of the definitions (1,14) and (1,16) it suffices�see the remark
above � to apply both to functions f and their differentials df:

L(Y)f= Yf=iirn3(co7f_f)=iim~[f(cot(y))_f(y)],

L(Y)df= d(Yf)= d[iim~(ca�f�f)] = iim~[ca�(df)�df].

A p-form w is said to be invariant with respect to the vector field Y ifL(Y)w = 0. The meaning of this is
obvious from the definition (1,16).

1.5. Stokes� theorem

We next turn to the very elegant formulation of Stokes� integral theorem in terms of differential
forms: Let w be a p-form with continuous coefficients in a region G C M� with boundary 0G, then the
integral

J w is defined by ~ J wa,.. .~~(y)dy��~. . dy~.

G

If ca: M� N� is a mapping which maps G on tp(G), w a p-form on ca(G) and ca ~ its �pull-back� on G,
then

J 1 (1,17)

~(G) 0

Stokes� theorem can now be stated as follows: If G is a p-dimensional region CM� and a, a (p � 1)-form,

then

Jdw*�J w. (1,18)

In order that eq. (1,18) makes sense, the region G, its boundary 0G and the form a, have to fulfill certain
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conditions, a detailed discussion of whichcan be found in the literature mentioned at the end of thischapter.
An important application of eqs. (1,14), (1,16) and (1,18) in the following chapters will be the following:

Let ~~(y), T E [0,1], be a 1-parameter �variation� of M�: ca~(~)E M�, ca~=o(y)= y and let V be the vector
field on M� which is induced by this variation, then according to eq. (1,17):

A~:= J wzJcaw

~,(G) G

and

= lim (A~- A0) = J lim
1(ca~w- w) = J L(%~w.dT ,-=o ,.-~oT r-*O T

G 0

Combining this with eqs. (1,14) and (1,18) we get

~ JL(~wJi(~dw+ J i(~w. (1,19)
uT r=o

0 0

Eq. (1,19) is a basic formula in the calculus of variation, where, in conventional language, the notation
6y� = (3ca�(y)/8T)~~oT+. - is used, instead of vector fields.

1.6. Vector fields, differential ideals, their integral submanifolds and Frobenius� integrability criterion

We have seen that a vector field Y = a� (y) 0~on amanifold M� defines asystem of ordinary differential
eqs. (1,2), the solutions y(t) = ca(t) of which are integral curves of Yin M�, in other words: One vector field
leads to 1-dimensional �integral� submanifolds I�(Y) = {y(t), y(O) = yo} through each point yo of M�.

Correspondingly, several linearly independent vector fields X
1, .. - , X,,, define a system of partial

differential equations of first order, the solutions of which define m -dimensional integral submanifolds
- . - , Xm) = {y = y(x), x = (x

1, - . . ,Xm)}, if certain integrability conditions are fulfilled. This last
requirement is a new, but important one. It comes about as follows:

Locally one can choose a coordinate system y = (x�,.. . , xm, z1, . . - , z�), m + n = 1, such that

X~8~+ca~(x,z)3~, ~=1,...,m,

:= 8/ôza. (1,20)

In this coordinate system the integral manifolds Im(X
1, . . - , X~)�ifthey exist�are given by the

functions Z� = fa(x) a = 1, -.., n, which have to obey the partial differential equations

a~fa(x)=ca~(x,z). (1,21)

This follows from eq. (1,1), if we put t = x~,~ = 1,. . ., m. Because a~a~f�(x)= 8~a~fa(x)the functions
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ca ~(x, z) have to obey the integrability conditions

~p~(x,f(x)) = + 8bca~ca~= ~jrca~(x,f(x)) =
8

1~ca~+ ~bca~p~ - (1,22)

In terms of the vector fields (1,20) the conditions (1,22) mean

[X,,,X,,]=0, ~,v=1,...,m.

The last equations form a special case of Frobenius� integrability criterion, which asserts when a
system 2~�of rn-dimensional tangent subspaces on Mt, the basis of which at each point y is given by m
linearly independent smooth vector fields Y,,..., Y,,, form the tangent spaces of an rn-dimensional
integral submanifold I~(Y1,. . -, Y~)C M�, associated with the �differential system� ,~5m The criterion
says that the submanifolds I� exist if for Y,.,., Y~E ~ the commutator [Ye, Y~]belongs to ,~2Pn too. An
application of this criterion is well-known: A subspace of a Lie-algebra generates a subgroup

(submanifold of the whole group manifold) if that subspace forms a Lie subalgebra!
According to E. Cartan it is more advantageous not to use the m vector fields (1,20), but those n

Pfafflan forms a,a, a = 1,.. - , n, which �annihilate� the vector fields, i.e. for which w�(X,~)= 0 for all a
and ,ti. This is the case if w� = dz� � ca~dx�.

The forms a,� generate an ideal I[w�] in the algebra A = A°~A�~- -~A� of forms on M�: If a,�

vanishes on ~ so does w A w�, where w is an arbitrary element of A. The integrability criterion
[Y,~, Y~]E i�, if Yb,, Y~E ~ is equivalent to the requirement that dw E I[wi if a, E J[a,a] This
follows immediately from eq. (1,12). The ideal I[w�] is called a Pfaffian differentialideal. More generally: If
j[~1 is an ideal of a set {w} of differential forms � not only 1-forms�, then I[w] is called a differentialideal if
d& E I[w] for all w E I[wl. For further details see, e.g., ch. IV.C of Choquet-Bruhat et al. [1977]or ch.
XVIII of Dieudonné IV [1974]!

A consequence of Frobenius� integrability criterium is: If the ideal I is completely integrable then
one can introduce local coordinates 9�, A = 1,. . ., 1, such that the ideal I[w�I is generated by the
differentials d9

m~�,a = 1, - . ., n and the integral submanifolds I� are characterized by the equations

9m+a = const,, a = 1, -.., n.

1.7. Rank and class of a differentialp-form

We now come to the most important part of this chapter: Let w be a p-form on M�. The minimal
number r of linearly independent 1-forms O~�~= f~1~)(y)dy�, p = 1,.. - , r, by which & can be expressed,
is called the rank of a,. Obviously one has r p; if r = p, then the form w is called �simple� or
�decomposable�, in which case w = O(11 A A

At each point y the forms O~�generate an r-dimensional subspace of the cotangent space T~.The
union of these subspaces generated by the forms ~(I�) is called the �associated system� A*(a,) of w.

The Pfaffian system A*(&) determines an (1 � r)-dimensional differential system A(w) of vector fields
Y = a�(y) 9~which are solutions of the equations

O�~(Y)=f~a�=0, p= 1,.. .,r. (1,23)

The space A(w) is called the �associated subspace� (C T(Mt)) or �associated differential system� of the
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form w. Its elements Y are the associated vector fields of w. A vector field Y is associated with the form
w if i(Y) w = 0. This follows from the fact that w can be expressed by the 1-forms ~ and that Y

obeys the eqs. (1,23). A consequence is that the Pfaffian system A*(w) is generated by the 1-forms

i(8~~,)--- i(0~,)w, A1,. . - ,A,,1 = 1,. . ., 1.

The reason is that, because of i(Ys) i(Y2) = �i(Y2) i(Y1),

i(Y) [i(8~~,)~- i(8~,)w]= (_1)~1 i(3~~,)-. - i(0~,)i(Y)w

=0.

Example:
For a 2-form w = ~ dy� A dy� we get i(8~)w= w~dy� which shows that the rank of w is the same as
that of the matrix (w~~).As the rank of a skew symmetric matrix is always even, the rank r of any
2-form is even. Thus r < / for uneven 1. As an application consider the 2-form

F = ~ dx� A df

of electromagnetic fields. In general F will have rank 4 and the associated system A*(F) can be spanned
by the four 1-forms dx�, ~ = 0, 1, 2, 3, and the only associated vector field X is the trivial one X = 0.
The reason is that the equations

i(X)F= a�F~~dx~=0,

or

a�F~~=0, ~=0,...,
3,

have only the trivial solution X = 0 if det(F~,,)= (E . B)2  0. If, however, det(F~,,)= 0 and (F~~) 0,
then F has rank 2 and its associated differential system A(F) can be spanned by the two vector fields
[Choquet-Bruhat et al., 1977, p. 251]:

X
5 = ~ B�81, X2 = B~0O� ~ (E x B~8J. (1,24)

In general the differential system A(w) (or the Pfaffian system A*(w)) is not completely integrable,
i.e. in general there is no (1 � r)-dimensional integral submanifold I~�~[A(a,)]= I°�~�(~)the tangent
spaces T~(1~

t�~)of which at each point y are spanned by (1 � r) linearly independent vector fields Y,,,

a- = 1,..., 1� r, which belong to A(w).
A completely integrable differential system C(w) associated with a form w is obtained as follows: Let

C(w) be the intersection of the differential systems A(w) and A(dw). The subspace C(w) is called the
characteristic subspace or the characteristic differential system of w. It can be shown that C(w) is the
largest completely integrable subspace of A(w). It follows immediately that the space C*(a,) of Pfaffian
forms which annihilate C(w) is the union of the Pfaffian systems A*(a,) and A*(dw). C*(a,) is called the
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characteristic Pfaffian system of w. The dimension c of the characteristic system C*(w) is called the
�class� of w. One sees that class c = rank r if dw = 0 and c  r in general. A vector field Y is an
element of C(w) if

i(Y)w0, i(Y)dw�O. (1,25)

Because of eq. (1,14) the eqs. (1,25) are equivalent to

i(Y)w�O, L(Y)w~r~0. (1,26)

It then follows from the last two of eqs. (1,15) that the commutator [Y1, Y2] of two characteristic vector
fields is again a characteristic vector field:

i([Y1, Y2])w=L(Y1)i(Y2)w-i(Y2)L(Yi)a,=0,

L([Y1, Y2])w=L(Y1)L(Y2)a,-L(Y2)L(Y1)w=0.

This shows that the characteristic subspace C(w) is completely integrable. The corresponding charac-
teristic integral submanifolds are (1 � c)-dimensional. Consider now the largest subspace of A(w) which
is closed under commutator building, then it follows from eq. (1,12) that this subspace will be
annihilated by A*(w) and A*(dw). Therefore it must be contained in C(w) and because of the
properties of C(w) the two are the same.

It follows from Frobenius� integrability criterion that for a given p-form there exist c functions
fO)(y), - . - ,f~(y)such that the characteristic Pfaffian system C*(w) is generated by the differentials
df~°,... ,df~and the (1 � c)-dimensional characteristic integral submanifolds Ft_~~[C(w)]are given by
f~)(y) = const., . . - ,f(c:l(y) = const.!
Examples:

(i) Suppose the electromagnetic field form F has rank 2. Because it is a closed form, dF = 0, its class
c is 2, too. That means that the differential system (1,24) is completely integrable and defines
2-dimensional submanifolds S�(x) = const., j = 1, 2, of the Minkowski space M

4. According to our
discussion above, the functions S� (x) obey the relation

F = dS1 A dS2, F~,,= ,9~51 8~S2�8~S28~S�. (1,27)

As dS1 A dS2 = d(S1 dS2) = �d(S2 dS1) we can interpret

S� dS2 = 51 8,,S2 dx�, or �S2 dS1 (1,28)

as the �potential� 1-form of an electromagnetic field of rank 2. A gauge transformation is performed by
adding the differential dg of a function g(x) to the potential forms (1,28). (The choice g =

transforms the first one into the second one!).
The submanifolds S�(x) = const., j = 1, 2, can be interpreted as the 2-dimensional Hamilton�Jacobi

�wave fronts� associated with the motion of a relativistic string [Rinke, 1980; Kastrup and Rinke,
19811.
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(ii) Consider on G�~�= {y = (t, q1, - . - ,qfl)} C R�~1the 1-form

w = �Hdt+ ~ dq�,

,/i~=~1i
1(t,q), H= (t,q,~1i(t,q)). (1,29)

The elements w = w,0, + w�81 of the associated subspace A(w) have to obey the equation

w(w) = �Hw, + ~Ji~w�= 0.

If H  0 this equation has the n independent solutions

W(j)//18,+H81, j=1 n. (1,30)

In the following we shall use the notations

8kH:= 8H(t,q,i/i)~ DkH:=
8q ~,fixed th,1i1

In general the vector fields (1,30) will not constitute a completely integrable system. For the
commutator of any two of them we obtain

[W(j), W(k)] = (HDJH+ ~/JJ3,I-I)w(k)� (HDkH + ~/Jk0,H)w(J)

+ [H(0I~IJk� a~t/i,)+ t/�j(84�k + DkH) � cl�k(84/J + DH)]a. (1,31)

The r.h. side of these equations is a linear combination of the vector fields w(J)(t, q)�i.e. A(w) is
completely integrable � if

34i,+D1H=0, 8,
4!k~3kt/Jj=O, j,k=1 n. (1,32)

If these relations are satisfied, then the form (1,29) is closed: dw = 0. Poincaré�s lemma asserts that � at
least locally � there exists a function S(t, q) such that dS(t, q) = w, which yields a (Hamilton�Jacobi)
equation for S(t, q):

3,S(t, q) = �H(t, q, ~i(t, q)), 8
1S(t, q) = ~i1(t,q). (1,33)

(iii) Consider the exterior derivative

dO = �dH(t, q, p) A dt + dp, A dq~

= �(ojHdq�+
4,,~dpj+a~Hdt)Adt+dpJAdq� (1,34)

=(dpj+8jHdt)A(dqi_~dt)
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of the form 0 = �H dt + Pj dq�. dO is a form on R2~with coordinates y = (t, q1,. - - qfl, Pi,.. - , pa). Its
associated system � which coincides with its characteristic system, because dO is exact � is generated by
the 2n Pfaffian forms

i(8
1)dO=�(dp1+83Hdt)��:�O,,

i(81r9p1) dO = dq� � dt =: a,�. (1,35)
c
9pj

If there are no additional constraints, rank and class of dO are 2n. The space A(dO) = C(dO) of
(characteristic) vector fields associated with dO is 1-dimensional and can be generated by

ÔH 0H8
XH � ~ + 8p ~ 8q~8p~�

because OJ(XH) = 0, w�(XH) = 0. Thus, the associated integral manifolds of dO are the 1-dimensional
solutions q�(t), p

1(t) of the differential equations

4�=8H/8p�, ji~,=�8Hl8q�.

1.8. Some bibliographical notes (highly personal and selective)

The vivid freshness and intuitive directness of E. Cartan�s monograph from 1945 is unsurpassed! An
introduction to the concepts surveyed above which is very useful and appealing to physicists is chapter
IV of Choquet-Bruhat et al. [1977].Well written and equally helpful I found Godbillon [1969].Much of
the material necessary can also be found in Dieudonné�s textbooks, vol. III [1972] and especially
chapter XVIII of vol. IV [1974].In addition I found the following more or less elementary introductions
to modern differential geometry useful (they do not contain, however, the notions �rank� and �class� of
a differential p-form): Pham Mau Quan [1969],Warner [1971],Matsushima [1972].

2. Reminiscences from mechanics

In order to prepare the ground for the application of Lepage�s ideas to field theories and to illustrate
some of the ideas involved in cases of familiar systems we first discuss some elements concerning the
�canonical� framework of mechanical systems. We shall later see, however, that the full power of
Lepage�s ideas shows itself only, if we have systems with at least two independent and two dependent
variables! Most of the literature concerned will be mentioned in the bibliographic notes at the end of
this chapter.

2.1. The Legendre transformation v
1 �~p,,L �~H

Let L = L(t, q, 4) be a (Lagrangian) function of the 2n + 1 variables t E [t
1, t2], q = (q

1,. . . , q�) E
G~C R~and 4 = (41,~ . . ,4�) E R~.The time evolution of a mechanical system corresponds to a curve
C

0(t) = {(t, q(t), 4(t)= dq(t)/dt)} in [t1, t2] x G~= ~ For a given system, corresponding to an ap-
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propriate choice of the function L, the �dynamical� or �real� curves C0(t) are characterized by the

property that they make the action integral

A[C]= JL(t,q,4)dt

stationary, if one compares the value of A[C0] with the values A[C] of �neighboring� curves C(t)�we
shall make this notion more precise in a minute �. A familiar necessary condition is that the �extremals�
C0(t) have to obey the Euler�Lagrange equations

daL
~-~-~�81L=0, j=1,...,n. (2,1)

The problem can be rephrased in the following way [Dixon, 1909; Kneser, 1921]: We consider
L = L(t, q, v) as a function of 2n equivalent dependent variables q and v = (v�,.. ., v�) with the
condition (constraint) that v� 4~ on the extremals. Such a problem can be treated with the help of
Lagrangian multipliers A,: We consider the Lagrangian

The Euler�Lagrange equations for the variables v� are
c9L 8L

3v�ôv� A,�0

because

8f~/8i)�= 0

and we obtain

L(t, q, 4, v) = L(t, q, v) � v
1 8L/8v� + 4� 0L/t9v�. (2,2)

If we introduce p~= 8L(t, q, v)/8v� as new variables and assume the matrix

(~\ ( 82L \ (23)
\~c9v�) \8v�3v�) �

to be regular, we can solve the equations P~= 8LI8v3 for v� = ~�(t, q, p) and define

H(t, q,p) = ~�(t, q,p)p
1 � L[t, q, v = ~(t, q,p)].

With these definitions we obtain for the Lagrangian (2,2):

L(t,q,4,p)= �H(t,q,p)+4�p,. (2,4)
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This Lagrangian contains 2n dependent variables q and p. but it depends only on the derivatives of q,
not on those of p. We therefore get as the 2n Euler�Lagrange equations for the 2n variables q and p:

8L 8H .. daf r9L -

�-~--=-,~----�q�=0, -7�-j-J=pj+
8JH=0. (2,5)

The basic idea of Lepage is similar in spirit to the above introduction of Hamilton�s function
H(t, q, p) and the derivation of the canonical equations of motion (2,5), but, due to the use of
differential forms, it is much more efficient:

Let a, = L(t, q, q) dt be the initial Lagrangian 1-form. The above procedure of introducing new
variables v1 which are equal to 4� on the extremals is equivalent to introducing 1-forms w� = dq� � v� dt
which vanish on the extremals q(t), where dq�(t) = 41 dt, or, where the tangent vectors e, = 8, + 4�8J are
annihilated by each w:

w�(e,)=4��v�=O, j=1,...,n.

Thus, as far as the extremals are concerned, the form w = L dt is only one representative in an

equivalence class of 1-forms, the most general element of which is
11 = L(t, q, v)dt+ h

1w�. (2,6)

As discussed in chapter 1, the n Pfaffian forms w� generate an ideal I[w�] which vanishes on the
extremals.

The coefficients h � which correspond to the Lagrange parameters A above � in general can be
arbitrary functions of t, q and v. According to Lepage they can be determined by the following
condition which has powerful generalizations in field theory:

For the exterior derivative of 11 we obtain

dIl= (-~_ h1) dv� Adt+(8,,Ldt+dh,)A a)�

= (-~j-� h1) dv
1 A dt + 0(mod I[w�]). (2,7)

We therefore have dfl = 0 on the extremals, where w� = 0, iii h = t9L/8v� = : P~-Inserting this value for
h, into fl, we get

11=Ldt+p,w� =Ld:+p,(dq��v� dt)

= �Hdt+p, dq� =: 0. (2,8)

The eqs. (2,8) provide the following interpretation of the Legendre transformation

v�-~p�=(t,q,v), L-t�H=v�p,�L:

According to our discussion above this transformation can be implemented by a change of basis
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dt�*dt, w~-÷ dq� (2,9)

in the cotangent spaces T~,~)(G�~)of the region G~~�on which the canonical form (1 is defined. Eqs.
(2,8) show that the Hamilton function H is the resulting coefficient of dt and the canonical momenta p,
the resulting coefficients of dq�, after the change of basis (2,9) has been performed. This interpretation
of the Legendre transformation turns out to be very powerful in field theories! In the following we
assume the Legendre transformation to be regular.

The property: dIl = 0 on the extremals is characteristic for the Hamilton�Jacobi theory of a
mechanical system and the realizability of such a theory is one of Lepage�s main motives.

2.2. Families of extremals and HJ theory

In a HJ theory one does not consider single extremals, but a family (a so-called �field�) of them,
such that through each point of a region G~~�= {(t, ....... ,q�)} passes just one extremal. Suppose the
different extremals q(t) are parametrized by constants (of integration) u1, -.., u�~,- . . � there may be
more than n parameters, but there should be at least n of them�, i.e. on G~~1we have

q�(t) = f�(t; u), pj = g,(t; u), u = (u1,..., U�, -

The functions f� and g, obey the equations

8H
8,f~(t;u) = -~j-�[t,f(t; a), g(t; u)],

(2,10)

8,g,(t; u) = � [t, f(t; u), g(t; u)].

If we define

A(t;u):��H(t,f,g)+g,a,f� (2,11)

the function

a-(t,to;u)=JA(i;u)dt (2,12)
t5

has the properties:

da- = A (t; u) dt � A (t
0 u) dt0 + -i-- duk,

furthermore, because of

~-___~+~OP+ .a~=8(.~
� 0q� öu�

0PI 8u� 3u� ~ 8u� ~ 8u�< �
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where the eqs. (2,10) have been used, we obtain

~ J dt8A(~u)/8uk = [g,~]�. (2,13)
to

With

gj(afdt+~~duk)=g,df1=pjdq3
ôu

we get for the differential da-(t, t
0 u):

da- = �H dt + P~dq� � (�H0 dt0 + p~°�dq~0)),
(2,14)

n(o) �q~O)= f�(t0 u), ,~ � g,(to; u), H0 = H(t0, q(0), p~)

or

�H dt + p, dq� = da-(t, t0, u) � H0 dt0 + m q(O)

1&r
= 8~dt+~~+g,(t

0 u)8k (t0, U))duk. (2,15)

The r.h. side of this equation is a differential of a function, if

8
10o�j~-8o- a+gj(to;u)~rf�(to;u)] (2,16a)u ôu

and

8 18o 8 I&r

~ g,(t
0 u)-/�~-f1(to;U)] ~r L~T+g,(t0 u)_/�1f1(to; U)] - (2,16b)

Since g,(to; u)(o9f�(to; u)/8u�) is independent of t, the eqs. (2,16a) are automatically fulfilled. The eqs.
(2,16b) are equivalent to

[u� u�],,~~ =0. (2,17)

-� ~\8u�8u� 8u� 8u�),,

The quantities [u�,u�] are the so-called �Lagrange brackets�. It follows from

= 8
2H ~ 92H J~[~f~

°~8u�8u’J 8PiôJ~j8u� 8u� ôq�dq� 8u� 8u�

that

8
1[u�, u�] = 0 (2,18)
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�along� a curve q�(t) = f�(t; u), p1(t) = g,(t; u), i.e. [u�, u�] is constant along an extremal: If [u�,a�] = 0

at t = t0, then it remains so for all t!

We therefore have the important result that

dO=d(�Hdt+p,dq�)=O if [u�,u�}11,=0. (2,19)

By an appropriate choice of the initial data at t = t0: f�(t0 u) and g~(t0u), we can � in general � always
fulfill the condition [u�,u�](t~)= 0, for instance, if q(t0 u) = 0 for all u�.

According to Poincaré�s lemma � see section 1.4� the property dO = 0 implies the existence of a
function S(t, q) such that the relation

dS(t, q) = �H dt + p~dq� (2,20a)

holds, which is equivalent to the Hi equation

81S(t, q) + H(t, q, p) = 0, p, = o,S(t, q). (2,20b)

Suppose, there are n parameters u� such that

~ (t; u) = (~(t; u)) ~ 0 in G�~
1, (2,21)

then we can solve the n equations q� = f3(t; u) for the parameters U�:

u� =~�(t,q), j=1,..., n. (2,22)

Inserting these functions into f�(t; u) and g,(t; u) we obtain

4� o9
1f�(t; X(t, q)) =: ca�(t, q), (2,23a)

p,=g,(t;~(t,q))=:~/i,(t,q). (2,23b)

The eqs. (2,23a) constitute a system of first-order differential equations for the extremals q(t). They give
the velocity of each �degree of freedom� at each point (t, q) E G�~

1.For this reason the functions

ca�(t, q) are said to define a �slope field�.

The functions ~� and ~fr

1 are related by a Legendre transformation: If the co� are given, we have

or, if we know the functions vi,, then

provided the matrix (2,3) is regular.
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Suppose now we are given n functions ~i,(t, q) and that we know a set of solutions q~(t)= f�(t; u) of

the differential equations

43(t)=~~/TL[t,q,p=~/i(t,q)], (2,24)

such that the inequality (2,21) holds. Since

~~LM

8u� öq� ôu�

we have

[ k ~ � (~L� ~ -~� � 2 25

~U ~U � ~8q� 8q
1) ôu� 8u� �

It follows that [Uk, u�] = 0, if a,~i,= 84i,. On the other hand, if [Uk, Ut] = 0, then 8,~i,= ~ because

det(~~i~=~i2n 0.
\ÔU 0u ,�

We here make direct contact with the problems discussed in chapter 1 in connection with the form
(1,29): The integrability conditions (1,32) (second half) for the form

-H(t, q, ~fr(t,q))dt + ~(t, q) dq�

are the same as above: 8~/i,= 8,,çl�,. The first half,

8
1~+D1H=0 (2,26)

of the conditions (1,32) in our context has the following interpretation: Suppose q(t) is a curve in a

region, where the functions ~.(t, q) are defined. Then

= ~p, �

8k~l�j4, p,(t) = ~(t, q(t)).

Since

D,H = o,H + th,bk 8j~I1k,

the eqs. (2,26) give

,ô, + a,H + 8k~/I,(8H/öI/Ik� 4�°) = 0. (2,27)

Thus, the integrability conditions (2,26) imply that the curves q(t) are solutions of the equations
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i~+ 8,H = 0, if they are solutions of the eqs. (2,24). Notice that the integrability conditions are fulfilled
automatically if ~ = 9S(t q).
Example:
For n = 1 there are no nonvanishing Lagrange brackets. For n = 2 a simple illustration of the above
discussion is provided by the harmonic oscillator in the plane with L = ~2 + 92_ w2(x2 + y2)) and the
extremals

x(t) = A
1 sin cut + B1 cos cut, y(t) = A2 sin wt+ B2 cos cut.

For any choice (u
1, u2) = (A

5, A2), (A1, B2), (B1, A2) and (B1, B2) the Lagrange brackets [u
1,u2] vanish.

Let us take u1 = B
1, u

2 = A
2, A1 = 0, B2 = 0. We then have Li (t: B1, A2) = cos cut sin cut, which is ~0,

provided cut  nir/2, n = 0, ±1,±2,...(the points where L1(t; u) = 0 are called �focal points�. They will
be discussed in chapter 8). For the functions (2,22) we get here

B1 =x
1 (t,x, y)= x/cos cut, A

2=~
2(t,x,y)= y/sinwt,

and the differential eqs. (2,23a) take the form

= �B~cusin cut = �cux tg cut = ca1(t, x, y),

9 = A
2cu cos cut = cuy ctg cut = ca

2(t, x, y),

cut~nir/2, n=0,±1,±�-.

The functions u� = x� (t, q) can be used for constructing a solution of the HJ eq. (2,20b) (�method of
characteristics�): Let us assume the initial data at to for the functions q� = f�(t; u), p, = g,(t; u) are such
that (g,ôf�/au�)

4, = 0. Inserting u� = x�(t, q) into the function a-(t; u), eq. (2,12), then the resulting
function S(t, q) = cr(t; X(t, q)) is a solution of the HJ equation.
Proof: With the help of the relation (2,13) we obtain

01S(t,q)= 8a-+~~0Xk=A

= �H(t,f, g)+ g18j� + g1~ atXk.

Differentiating the identity q� = f�(t; X(t, q)) with respect to t gives

0=81f1+~~c81Xk
3u

and therefore we have 81S(t, q) = �H. Furthermore

8cr k k

81S = ~
3iX = g ôu� 8iX = g,6

1 = gj,

which completes the proof.
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At the end of this paragraph I would like to indicate the direction the work on HJ theories in
mechanics has taken during the last 10 years or so: Let us go back to the Lagrangian bracket in eq.
(2,17) and let us suppose again that the determinant (2,20) does not vanish. Then, for fixed t, the
functions

q� (u) = f� (t; u), p
1(u) = g,(t; u)

define an n-dimensional submanifold of the 2n-dimensional phase space P
2�. This submanifold is called a

�Lagrangian� submanifold if [u�,u�]
1 = 0 and will be denoted by ~ If t changes, L~�~remains

Lagrangian, because the Lagrange brackets [u�,a�] are constants of motion, compare eq. (2,18).
Lagrangian submanifolds have the following properties: For fixed t we have

cut:dpJAdq(~f~Jzdu�)A(~idut)

= ~[u�,u�] duk A du� =0 (2,28)

which shows that the concept of �Lagrangian submanifolds� is invariant under symplectic trans-
formations. A basis of the tangent spaces T(q,p)(L~�~)is given by

1.
~ 8u� t9u� ôp,

and eq. (2,28) means w1(l(J), l(k)) = 0 for all j, k = 1,. . - , n. This shows that the tangent spaces T(q,p)(L~�~)
are “isotropic” with respect to the symplectic form cu1. As the dimension of L~��is n, those tangent
spaces are isotropic subspaces of maximal dimension.

Since w1 = dA,, A1 = P, dq�, the relation (2,28) means that A1 is closed on the tangent spaces of ~
According to Poincaré�s lemma we have locally

A1 = dS1(q) = 8,S1(q) dq�.

S1(q) is called a generating function for the Lagrangian submanifold ~ The time evolution of

S1(q) = S(t, q) is given by the HJ equation 8S(t, q) + H(t, q, p = a,S) = 0.

Relations between the n-dimensional Lagrangian submanifolds L~�~and the n-dimensional wave
fronts S(t, q) = a- = const. will be discussed in chapter 8, where we shall investigate those �singular�
situations which have Li (t; u) = 0, ~, i.e. when we have �focal� points.

2.3. Another derivation of the equations of motion

We next turn to the derivation of the canonical equations of motion by “varying” the action integral

A[~] = J 0, 0= �H(t, q, p) dt + p, dq�, ~(t) = {(t, q(t), p(t))}.
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The 1-form 0 depends on 2n + 1 variables t, q� and p, (or v�), I = 1,. . - , n, which are the coordinates
of the extended phase space f~2n+i Consider the 1-parameter �variation� car of f~2n+1.

t�~car(t), q�~ç~(q), p�~cor(p), TE[0, 1],
(2,29)

car=o(t)�� t, co~-_o(q)�q, ca~=o(p)��p-

(Compare the discussion in chapter 1, preceding eq. (1,19)!) A curve = (t, q(t), p(t)) will be
“deformed” by the transformation (2,29) into

= {(car(t), ~p4q (car(t))], cor[p(~pr(t))1)}

and at (car(t), ca~(q),q,.Q)) we have the form Or, where (t, q, p) has been replaced by (~(t), car(q),

ca~(p)).
If we define

Ar := A[ca~)I = J O~ J ca

then, according to eq. (1,19), we obtain

~~=JL(V)0=J i(V)dO+ J i(V)0

where V is the vector field induced on ~i2n~-1 by the �variation� (2,29):

V = V(I)8t + V~
0)8j+ V~�~~,

V(1)(t, q, p) = 81.car(t)ro , B,. B/c9T,

(2,30)
V~q)(t,q, p) = B,~,.(q�),.o

V~(t,q, p) = ~

We are interested in those curves ~ for which

~ r=o~0~J i(V)dO+ J iVO=0. (2,31)

This important formula needs some interpretation: Consider first those variations ~,. for which

t for all r and t, p,.(q(15)) = q(t0) for all 1~,
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where t
5, s = 1, 2, denote the time variables of the boundary 8~.It follows that

V(1) = 0 , V~q)(ts,q(t5), p(t,)) = 0

and therefore

d.r~r~~0Ii(V)dO=0. (2,32)

The last equation is supposed to hold for arbitrary smooth vector fields V, which implies that the
integrand i(V)dO has to vanish. This is interpreted as follows: i(V)dO is a 1-form on P

2�~which
vanishes when applied to a tangent vector C�

0 = 8~+ 4�B, + j3,, 8/Bp, of the extremal C0. Thus, the

implication of eq. (2.32) is:

[i(V)dO](Ô~)= 0 for arbitrary V,

dO = �dH(t, q, p) A dt + dp, A dq
1,

ê~,=8
1+4

18,+j.5,8/8p
1. (2,33)

Taking for V the special vector fields B,, 8/Bp, and 8~respectively, we obtain

[i(B,)dO] (E~,)= �(a1H + j~)= 0, (2,34a)

[i(8/8p1)dO] (~)= � BH/8p1 + 4� = 0, (2,34b)

[i(81)dO] (ê~)= B,H4� + ji� = 0. (2,34c)

The last equation obviously is a consequence of the other ones.
If weconsider the coefficients of the canonical form 0 as functions of v� instead of p,, we obtain from eq.

(2,8)

dO= (�B,Ldt+dp1)Aw�. (2,35)

Since i(Bk) cu� = i(Bk) dq� = 6~, eq. (2,35) implies

[i(8,)dO] (ê~)= � 3,L + A = 0, p, = o9L/Bv�, (2,36)

which are just the Euler�Lagrange equations. Observing that

dpj=~dvk+...=8a:~,dvk+...

we further get from eq. (2,35)

[i(8/Bv�) dO] (E~)= 8~8Vk (4k - vk) =0, (2,37)
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which implies that ~ v on the extremals if the Legendre transformation is regular, i.e. if

/ 82L \

 0.
We next turn to the boundary term i(V) O~~�i(V) O~,in eq. (2,31): Suppose the curve we consider is

an extremal, then the first term f~i(V) dO vanishes for arbitrary V and the equations

i(w)0
1,=0, s=1,2, (2,38)

mean that the tangent vectors w5 = w1,85 + w~l,at (tx, q(t0)) are associated vectors of the form 0, the
coefficient functions of which are determined by the extremals C0(t). We saw in chapter 1 that the set of
all associated vector fields of the closed form 0 constitutes an n-dimensional completely integrable
system the integral manifolds of which are the wave fronts S(t, q) = a-, where S(t, q) is a solution of the
HJ equation 81S + H(t, q, p = aS) = 0.

The vector fields w = w18, + w�B, which obey the equation i(w) 0 = 0 are said to be �transversal� to
the extremals �associated� with do. The reason is the following: On G�~

1the tangent vector
e
1 = B~+ 4�a, of an extremal and the n tangent vectors WQ) = p~8~+ Ha,, j = I n, of the associated

wave front at a point (t, q) in general are linearly independent. This can be seen from the value of the
determinant (e1, W(l) w1~~)~of the matrix

1 p~---p~

�1 , (2,39)
HE~

where E~is the unit matrix in n dimensions and where the n + I columns are the components of e1 and
the W(1). The value of the determinant can conveniently be calculated in the following way:

Suppose

A_~1 A2
~A3 A4

is an (n + m)X (n + m)-matrix, where A, is an (n x n)- and A4 a nonsingular (m x m)-matrix. It then
follows from the relation

(A1 A2~( E~ 0 ~ (A1�A2A~�A3 A2
~A3 A4A�A~

1A
3 Em! � 0 A4

that [Satake, 1975, p. 76]

(~~)= A~A, � A2A~A3~, (2,40a)
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or correspondingly, if A, is nonsingular

(~~:)= 1A11 IA4� A3A1
1A

21 -

Applying the relation (2,40a) to the matrix (2,39) gives

w(fl))I = H�(1 � q�p1/H) = �H�
1L. (2,41)

This means that the vectors e, and W(J) are linearly independent where HL 0! The singular case
HL = 0 will be dealt with in chapter 8.
We can summarize an essential part of the above results in the following way: The 1-dimensional

extremals C
0(t) are the integral manifolds associated with the 2n + 1 1-forms i(V) dO of rank 2n and the

n-dimensional wave fronts S(t, q) = const., transversal to the extremals, are the integral manifolds
associated with the form 0 itself!

2.4. Carathéodory�s approach to the calculus of variation

As this review owes so much to Caratheodory�s work on the calculus of variation, I would like to
sketch some of his ideas:

In Carathédory�s approach the notion of a �field� of extremals plays a central role. His essential
arguments are as follows:

Suppose we have n first order differential equations

4�=ço�(t,q), j=1,...,n, (2,42)

in a region G�~,and a function L(t, q, v) with the property that for the solutions C0(t) of the eqs. (2,42)

one has L[t, q(t), cp(t, q(t))] = 0, but L(t, q, v)>0 for all other near-by curves C(t)= {(t, q(t), v = 4(t))}

� the neighborhoods suitably defined �, then the curves C0 obviously minimize the action integral

A[C]=J L(t,q,4)dt.

For a given Lagrangian L(t, q, 4) with the action integral

A[C]=JL(t,q,4)dt

there will be in general no functions ca�(t, q) with the properties just described. However, one can hope

to find such �slope� functions for the �equivalent� variational problem defined by the Lagrangian

L(t, q, 4) = L(t, q, 4)�~(t,q(t))

= L(t, q, q) � 8,S � 4�a,S. (2,43)
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The variational problems defined by the Lagrangians L and L are equivalent in the following sense:
One has

A[C1-A[COI=A[CI-A[CO1,

because the value of the integral

J ~ dt = S(t2, q(t2)) � S(t1,

is independent of the curves C(t) if the endpoints q(10), s = 1, 2, are the same for all of them.
Furthermore, we have

8
2L �

19
2L

Bv�Bv� � Bv�Bv� -

Suppose now, that there is a system of slope functions ca-�(t, q) such that for the solutions C
0(t) of the

differential eqs. (2,42) the equality

L(t, q, ca(t, q)) = L(t, q, q~(t,q))� 81S� ca�(t, q) B,S = 0 (2,44)

holds, whereas L(t, q, 4) > 0 for all other curves C(t) �near-by� which connect the same endpoints q(t1)
and q(t2), then the curves C0(t) provide a solution of the variational problem to determine those curves
which minimize A[C]. If the previous assumptions are valid, the function

L(t,q, v)=L(t,q, v)�81S�v�B,S

has a minimum for v = ço�(t, q). A necessary condition for this to be the case is that the partial
derivatives BL/Bv� vanish for v� = ca� (t, q), which implies

[t, q, ca(t, q)j = 81S(t, q). (2,45)

The equation L(t, q, v = ca(t, q)) = 0 means

L[t, q, ço(t, q)]� ca�(t, q)~[t, q, ca(t, q)] = 81S(t, q). (2,46)

Carathéodory calls the eqs. (2,45) and (2,46) the fundamental equations of the calculus of variations
[Caratheodory, 1935, §235]. Introducing canonical coordinates p, = (BL/Bv�)(t, q, v), H = p1v� � L, these
equations mean

~t~(t,q) = [t, q, v = ca(t, q)] 8~S(t,q), H[t, q, p = ~i(t, q)] = �81S(t, q),
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i.e. the function S(t, q) introduced in eq. (2,43) has to be a solution of the HJ equation. A characteristic
feature of Carathéodory�s approach is that for him the wave fronts are at least as important as the
extremals themselves: Given a solution S(t, q) of the HJ equation, the solution q(t) of the first order
equation

4� = [t,q, p, = 8,S(t, q)] =: cp�(t, q) (2,47)

is an extremal, i.e. it is also a solution of A = �8,H. This was shown in connection with eq. (2,26).
If C(t) = {(t, q(t))}, t E [t1, t2] is any smooth curve inside the region G”~’which is simply covered by

solutions of the eqs. (2,47), i.e. by extremals, then the value of the line integral

J dt {L[t, q(t), ca(t, q(t))] + [4�- ca~(t,q(t))] [t, q(t), ca(t, q(t))]}

= J dt {-H[t, q(t), ~(t, q(t))] + 4�~(t,q(t))} (2,48)

depends only on the endpoints q(t5) and q(t2). This follows from eqs. (2,45) and (2,46) which show that
the integrand in eq. (2,48) is equal to dS(t, q(t))/dt. The line integral (2,48) is Hilbert�s famous
“independent integral” [Hilbert,1906; Gelfand and Fomin, 1963, §33; Hestenes, 1966, ch. 3].

2.5. The propagation of wave fronts

In the background of Carathéodory’s canonical theory for fields is Huygens’ principle (again!). This

background was analyzed in an important paper by E. Holder [1939],who used Lie’s interpretation of

Huygens� principle in terms of contact transformations [Lie and Scheffers, 1896, ch. 4; Lie, 1896] to
illustrate the main points in the case of mechanics:

We saw that the wave fronts for a system with n degrees of freedom can be given by the equations
S(t, q) = a- = const., which means that for fixed a- the variable t becomes a function of the n coordinates
q�, t= t(q), with derivatives

k1 = 81t(q)= �a~Sia1S. (2,49)

A plane tangent to the surface S(t, q) = a- at the point (t, q) is given by

(2,50)

where (r, ~, . . . ,~�) E R�~�are the �running� variables of the plane. If the parameter a- changes from
a- to 6-, the points (t, q) of the old surface will become points (t, 4) of the new surface S(t, 4) = 6-

const. and the tangent plane (2,50) will go over into a tangent plane T � t = k,(~�� 4�). Such a
transformation of the variables t, q� and k1 is called a �contact� transformation. Because the relation
k = 8,t(4) has to hold on S(t, 4) = 6-, if k, = 8,t(q) holds on S(t, q) = a-, a transformation (t, q, k)�*
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(t, 4, k) is a contact transformation if the relation

dI�lt~jd4��p(dt�kjdq�), p=p(t,q,k), (2,51)

holds. Suppose we increase a- by ha-, then we have the infinitesimal transformations

1= t+ T(t,q,k)Sa-, (2,52a)

4� = q� + Q�(t, q, k)Sa-, (2,52b)

l.~,= k, + K,(t, q, k) ~a- (2,52c)

and the coefficient p in eq. (2,51) becomes p = 1 + h so-. Inserting p and the expressions (2,52) into the
eq. (2,51) and comparing the coefficients of ~a-gives

dT�k,dQ��K,dq� = h(dt�k,dq�),

or

d(k,Q� � T) = �h dt + (hk, � K,) dq� + Q� dk1. (2,53)

Defining the function F(t, q, k) = k,Q� � T, the relation (2,53) implies

81F��h, 81F�hk,�K,, BF/Bk,= Q�,

and therefore

T(t, q, k) = k BF/ak, � F, (2,54a)

Q�(t, q, h) = BF/8k1, (2,54b)

K,(t,q,k)=�a,F�k,81F, (2,54c)

that is to say, the infinitesimal contact transformation (2,52) is generated by one function F(t, q, k) and
the a--dependence of t, q and k is governed by the differential equations of wave motion

dt/da- = k, BF/ak, � F, (2,55a)

dq�/da- = aFlak,, (2,55b)

dk,/da- = �B,F� k, B,F. (2,55c)

Suppose now we have solutions t = t(a-; u), q� = q�(o-; u) and k = k�(a-; u) of the eqs. (2,55) which
depend on at least n parameters u�, then the eqs. (2,55) imply
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dt - k, dq� = -~ da- + G, du�,

E(a-, u) = F(t(a-; u), q(a-; u), k(a-; u)), (2,56)

G,(u,u)= Bt/au��k,aqVau�,

where the coefficients F and G, have the property

a0.G,=�G,81F, (2;57a)

dF/da- = 80F = �FB1F. (2,57b)

Differentiating the identity a- = S(t(o-), q(cr)) with respect to a- gives

1 B1Sdt/da-+8,Sdq�Ida-,

or because of the eqs. (2,55a, b) and (2,49)

FB1S=�1, (2,58)

which combined with eq. (2,49), k, = �a,S/81S replaces the HJ equation!
If we define

H = 1/F (2,59a)

= k,/F, (2,59b)

we recover the usual canonical framework of mechanics. In order to show this it is convenient to use the
notation y� := oF/ak,. The functional determinant of the transformation (2,59b) has the value

I(ap,/ak,)I = ftF�(&~� y�k~/F))J= �TF�~= �TH�~- (2,60)

The relation (2,56) now takes the form

�H dt + p, dq~= da- � (G,/F) du�. (2,61)

Because of the properties (2,57) we have

81(G,/F) = a,,.(G,/1~)8~cr= (19~G,/F� (G,/E~)a0P) 8,cr = 0. (2,62)

Thus, the 1-form (2,61) has the same structure as the 1-form (2,15). For dH = d(1/F) we obtain

TdH= F
1(B

1Fdt+ 8,Fdq�)+ y
1 dp,, (2,63)

which implies
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TBIH = BIF/F, (2,64a)

Ta,H = BJF!F, (2,64b)

TBHIBp, = y� = BF/ak,. (2,64c)

As T = k,y� � F, we have

T(p, BH/ap, � H) 1, (2,65)

i.e. T = IlL. In addition we get

= 4~i±/-~-~ = ~ / T =

dt da-/ da- Bk,!

= ~ /dt = d(k,/F) /dt = d(k,/F) / T
dt dcl do� da- / do� du / -

Using the relations (2,55c) and (2,57b) yields

= ~/~� - k,a,,.F/P�2 = -a,F/F,

and because of eq. (2,64b), we finally have

dp,/dt = �a,H.

Thus we see that there is a one-to-one correspondence between the canonical equations of motion for
the particles and the equations of motion (2,55) for the associated wave fronts, provided we have
dt/da- = 1/L 0, ~, i.e. if t is a unique function of a- and vice versa. Whereas H generates an
infinitesimal canonical transformation with group parameter t of the particles, the function F = i/H

generates an infinitesimal contact transformation with group parameter a- of the wave fronts.
I find it utterly amazing that the dynamical laws of mechanics can be derived from the simple

requirement that the �motion� of n-dimensional surfaces in an (n + 1)-dimensional space should map the
tangent planes through the points of an initial surface onto the corresponding tangent planes through
the image points of the �moved� surface!
Example:
Suppose we have H(x, p) = (1/2m ) p2 + V(x), x E R3, then we get for F(x, k) the quadratic equation

F2V_F=~~~_~_k2, (2,66)

2m

with the roots

F
1,2 = ±~~(1 � 2Vk

2/m)112. (2,67)
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Since (1� 2Vk2/m) = L2/H2  0, the root in eq. (2,67) is always real. It vanishes where L = 0. The sign
in eq. (2,67) has to be chosen such that F = 1/H. Suppose, for instance, that V> 0, then H >0 and we
have

F
112=~(1± ILI/H)=1/H,

or 2V = H ± LI and the choice of sign depends on the sign of L: If L is positive (weak coupling) then we
have to take the minus sign, if L is negative (strong coupling) we have to take the plus sign.

We see that the points with L = 0 separate different branches of F. Notice that the functional
determinant (2,60) becomes singular, too, if L = 0, because T = ilL. The deeper reasons for the
criterium L = 0 will be discussed in chapter 8.

It follows from eq. (2,57b) that F = F0 = const. for the solutions of the eqs. (2,55) if 8,F = 0, i.e. if F
(or H) does not depend explicitly on t. Differentiating the eq. (2,66) with respect to k, and x

1 gives

(2FV� 1) OF/ak, = �k/rn, (2FV� 1) a,F = �F2 8,V

and the equations of wave motion (2,55) become

~-���F
0/(2F0V�1), ~± =_.~/(2F0V_1), ~]~1-=F~a,V/(2F0V_1).

Instead of solving these differential equations one can, of course, solve the corresponding canonical
equations for x�(t) and p,(t) and then determine t(o-) from�see eq. (2,11)�

a-(t)= JA(~u)d~.

2.6. Bibliographical notes

The above remarks represent, of course, only a very small selection from the canonical framework of
mechanics. Let me therefore point out some of the literature, in addition to that already mentioned
above, which I have been using:

A little bit �old-fashioned�, but still extremely valuable are the textbooks by Whittaker [1959] and
Pars [1965].Very influential upon the modern development of mechanics has been E. Cartan�s classic
�Lecons sur les invariants intégraux�. Very important elements � many of which still wait for their

�rediscovery� by mathematical physicists � are contained in Carathéodory�s book �Calculus of varia-
tions and partial differential equations� [1935]. In Carathéodory�s approach the Lagrange brackets
(2,17) play an important role. A short summary of this approach was given by Boerner [1953].Lepage�s
equivalences O~LdtmodI[w�], dOnaomodl[w�] in the context of mechanics were discussed by
Boerner [1940a]and Dedecker [1951,1957b].

Probably the best modern introduction to the canonical theory of mechanical systems is that of
Arnold [1978].The by far most extensive survey concerning modern research in mechanics is the second
edition of the book by Abraham and Marsden [1978].However, due to their heavy deployment of
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formal machineries its appeal to physicists may be limited! In any case, it is a very valuable guide to the
modern work on dynamical systems. Chapter 5 of Abraham and Marsden contains a discussion of the
ideas and the literature concerning Lagrangian submanifolds and their relation to HJ theories.
Pioneering contributions to this field were made by Maslov [Maslov, 1972; Maslov and Fedoriuk, 1981]
and Arnold [1967].Other texts on this subject are [Weinstein, 1977; Guillemin and Steinberg, 1977;
Kijowski and Tulczyjew, 1979]. Good modern introductions into mechanics are [Godbillon, 1969] and
[Thirring, 1978]. See also [Souriau, 1970]; [Estabrook and Wahlquist, 1975] and [Hermann, 1977b].

3. Canonical theories for fields with two independent variables

We now come to the essential part of this review: the implications of generalizing Lepage�s
fundamental equivalence relations

U L dt (mod I[cu,]), dO 0 (mod I[cu�]),

of the canonical form 0 = L dt + p1cu� = �H dt + P, dq�, as discussed in the last chapter, to field theories:
As the essential new features can be seen already for systems with 2 independent variables, we first shall
discuss only such field theories and we shall deal with applications to higher dimensions in chapter 6.

3.1. The generalized Legendre transformation

We denote by x°�,~.c= 1, 2, x = (x
1, x2) E G2, the independent variables and by Za, a = 1, .. .,

those variables of y = (x1, x2, z1,. . - , z�) E G2~�,which become the dependent variables Z�~= fa(x) on
2-dimensional submanifolds £2 C G2~”.Furthermore, the variables v~,a = 1,.. ., n, ~a= 1, 2, become
the derivatives 8

1~,~z�(x)= a~fa(x)on those surfaces £2, especially on the extremals £~, to be discussed
below. This last property can be rephrased as follows: The Pfaffian forms w(~= dz� � v~dx� vanish on
the extremals £~ where v�~=

Let L(x, z, a~,z)be a Lagrangian function of the action integral

A[~
2] = J L(x, z, Bz) dx1 dx2,

which is supposed to become stationary for the extremals £~, if we vary the functions z�~(x)and
8~z~2(x)_this will be made more precise below�. By using the forms cu�°= dz�°� v~dx�� we here can
argue in the same way as in the case of mechanics:

As far as the extremals are concerned, the Lagrangian 2-form

cu=L(x,z,v)dx�Adx2 (3,1)

is only one representative in an equivalence class of 2-forms, the most general of which, 12, can be
written as

1 2 2 1 1 a b

fl~w+hacuaAdx +hadX AW~�~habcuAcu

~w(modI[w��]), hba = �hab- (3,2)
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The last term ~habWaA wb is new compared to mechanics and it is only possible, because 11 is a 2-form
and if n  2. The coefficients h~and hab in general can be arbitrary functions of x, z and v.

In mechanics the coefficients h, in (2 = L dt + h,w� were determined by the requirement dul 0
(mod I[cu�]), a property which is characteristic for HJ theories. It was Lepage�s important idea to
generalize this postulate to field theories: For the exterior derivative dul of the form (3,2) we get

du1(8aLdZ~~+dV~)AdX1AdX2

+dh~Awa~ Acub)

= (~._ h~)dv~A dx1 A dx2 + 0(mod I[cu�~]), (33)

where the equality dz� A dx1 A dx2 = w�~A dx� A dx2 has been used. We see that the condition dill 0
(mod I[cu�~]) is equivalent to

= 8L/8v~=: - (3,4)

This is the same as in mechanics. New and important is, however, that the condition dill 0 (mod
I[cu�~]) does not impose any restriction on the coefficients hab. This has far-reaching consequences:
Inserting the relations (3,4) into the form (3,2), we get

11 = L dx1 A dx2 + 1T~wa A dx2 + ~ dx1 A cu�~+ ~habW�A w1�. (35)

Each choice of the coefficients has, defines a �canonical� form 12h� The implications of such a choice
will become more evident when we define the canonical momenta. Before we do that, let me introduce
some notational simplifications:

With

a�� :=Ldx��-i-ir~cu�~, ~ = 1,2, (3,6)

and e,~= i���, E~= 1, ~ = �e,~,.the form (3,5) can be written in the compact form

12 = L dx� A dx2+ 7T~WtZ A d~+~habcuaA

= a�� A d.~.� L dx1 A dx2 + ~habcu�~A cut, d.~.= s~dxv. (37)

In chapter 2 the Legendre transformation v� �* p,, L �* H, was implemented by a change of basis
dt�* dt, cu� �~dq� by inserting for to� the expression dq� � v� dt and identifying the resulting negative
coefficient of dt with the Hamilton-function H and the canonical momenta p, with the corresponding
coefficients of dq�. Generalizing this procedure to the form (3,7) means: We first replace cu� by
dza � v~dx�� and express .0 in terms of the basis dx1 A dx2, dz�~n dx2, dxt A dz°,dz�~A dz�:

~

x dz~zA dx2+ (1T~+ habv~)dx1A dz�~+~habdz� A dzt�.
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If we define ~ = E”hab, then we can rewrite the last equation as

.0 = (L� ir~v~+~h~v~v~)dx1 A dx2+ (ir~� h~lv~)dz� A d.~+ ~habdz� A dz�. (3,8)

The generalized Legendre transformation, according to Lepage, defines the canonical momenta p~as
the coefficients of dz�~A d.~:

p~=~�h~lv~ (3,9)

and the Hamilton-function H as the negative coefficient of dx1 A dx2:

~ (3,10)

The form (1 can now be rewritten in terms of �canonical� variables:

12=~Hdx1Adx2+p~dzaAd.I,~+~habdzaAdzb. (3,11)

The canonical momenta (3,9) reduce to the conventional ones, ii~, if all hab vanish. In order to
express the quantities H and hab as functions of the momenta p�~,the Legendre transformation v~�~p~
has to be regular, i.e. the functional determinant of the Jacobi matrix (Op~/Ov~)should be non-
vanishing:

= (BvBt2~vaM� v~� h~)  0. (3,12)

As the coefficients h~are arbitrary�up to now�, an appropriate choice can always guarantee the
inequality (3,12). This freedom indicates an interesting possibility for defining a regular Legendre
transformation, if the conventional one, v~�~ i~-~is singular, as, e.g., in gauge theories. We shall come
back to this problem later on.

Let us assume we can solve the eqs. (3,9) for the variables v~:

= ç~(x,z,p).

Inserting these functions into h~= h~(x,z, v), we obtain

�q~J~(x,z,p):�h~(x,z, v = ~(x, z,p))

and for the Hamilton-function H:

H(x, z, p) = ~r~[x,z, v = ~(x, z, p)] ~x, z, p) � � L[x, z, v = ~(x, z, p)].

From eqs. (3,10) and (3,9) we get

~
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and

di~=dp~+d(h~v~).

Combining these two equations gives

dH= ~ (3,13)

Inserting

~

where

a~H:= OH/Ox��I,.,~fixed

and

dL= O,~Ldx� +OaL dza+1~dv~,

dh~= d~ = OAi~dxA + ~ dz�~+ ~-�~ dp~
PC

into eq. (3,13) and comparing the coefficients of dx��, dz� and dp~gives

= �a~L, (3,14a)

~ O~j~=�a~L, (3,14b)

aH/ap~~ B~~/ap~= v~. (3,14c)

3.2. The canonical field equations of motion

Up to now the variables x��, Z� and v~or p~have been treated as independent. This is no longer the
case, if we look for the extremals .~, those 2-dimensional submanifolds Za = fa(x) p~= g~(x)for
which the variational derivative dA[.~2]/dr� see eq. (1,19) ��of the action integral

A[E2]=Jfl

vanishes at r = 0:

~[~] f i(V)dfl+ J i(V)ill=0, (3,15)
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where

V VrX)B~.+ V~z)Ba+ V�~�p)aB/Bp~ (3,16)

is an arbitrary vector field.
Arguments which run completely parallel to those in chapter 2 show that the tangent vectors

= B~+ B~z��(x)Ba + a,~p~(x)B/Bp~ (3,17)

of an extremal .~ have to obey the equations

[i(V) dO] (..~1), .~(2)) = 0 (3,18)

for arbitrary vector fields V, which we take to be the independent ones B~t, Ba and B/Bp~.
Since

dQ(BaHdza+~~dp~)Adx1Adx2+dp~Adza Ad~ (3,19)

dx�� + BCTlab dZC +~“~71abdp~]Adza A dzb,

we have

j(Ba) dill = BaH dx� A dx2 � dp~A d~� B,~71abdx�� A dz� + ~Ba7l& dz� A dZC

� Bb~Jacdzb A dzC � dp~A dzC, (3,20)
b

i(B/Bp~)dill = � -~ dx1 A dx2 + dza A d~+ ~ dZb A dzC (3,21)
Pa Pa

and

i(B,~)dill = (BaH dza + ~ dp~)A d~� E~ dp~A dza + ~BM~ab dza A dz~. (3,22)

Applying the 2-form (3,20) to the tangent vectors (3,17), we get the partial differential equations

[~(Ba)d.0I(~I), ~(2)) = BaH B~p~� (a)a~zb+~(Ba~)B~~bB~ZC

� (a~~)B~ZCB~zb� BAP~B~ZC 0. (3,23)

The differential eqs. (3,23) are the analogue of the canonical equations j~,+ a,H = o.

If we define

z,p):= a~F+BaFB~Z�~ ~ (3,24)
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e.g. dza(x)/dx~~= BMZa(x) etc., we can rewrite the eqs. (3,23) in a more compact way:

dp~/dxM+ BaH = ~Bafl~ B~zbB~zc� (d7]~/dx,~)B~zb. (3,25)

The 2-forms (3,21) give the differential equations

[i(a/ap~)dQ](.~i),E(

2)) = � ~ O,~,za+ ~ ÔAZ� O~z�~= 0, (3,26)

which are the same as the eqs. (3,14c), if 8,~za(x)= v~.We shall show below that this equality is a
consequence of the inequality (3,12). The 2-forms (3,22) yield the differential equations

B~ZaBaH+~4 B~p~—E~EA~ BAP~O~za+~(O ~)OAZa O~Zb= 0. (3,27)

Pa

These equations are, however, a consequence of the canonical eqs. (3,23) and (3,26): If we multiply eqs.
(3,23) by B~z�~,sum over a and use the eqs. (3,26), we obtain the eqs. (3,27).

The eqs. (3,25) and (3,26) represent a system of n + 2n = 3n first-order partial differential equations
for the 3n functions f� = fa(x) and p~= g~(x).By eliminating the canonical momenta p~we obtain a
system of n second-order differential equations for the functions Z� = fa(x), namely the Euler�
Lagrange equations

~OaLtO. (3,28)

This can be proven as follows: It follows from the eqs. (3,9) that

-=~~-� (~-~�~K)~ (3,29)

Since ~ = BOz~� h~= �hz, the last term on the r.h. side of eq. (3,29) vanishes. Combining the
rest of the eqs. (3,29) with the canonical eqs. (3,25), we obtain

d�~r~/dx��+ OaH = ~(Oa~J~�)3,~z�O~ZC.

Together with eqs. (3,14b) the last equations give the Euler�Lagrange eqs. (3,28), where the arbitrary
functions hab have dropped out completely!

I next want to show that the inequality (3,12) implies v~= 8~zn2(x)on the extremals, at least in a
neighborhood of v~= 0: Exterior differentiation of the form (3,5) yields

dill = t9aL dz� A dx
1 A dx2 + r,~dirt A ~ A dx� + ~(dhab)A W�~A W~�+ hab dw�~A tob. (3,30)

If the 2-form

dli = 3v~Ov~~Acu A dxA ~ A cu� � has, dx�� A tob (3,31)
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vanishes, when applied to tangent vectors ~ + B~ZaBa+ - - we obtain the equations

(3,32)

for the differences ~i~3= O~z�(x)�v~.The eqs. (3,32) constitute a set of (nonlinear) eqs. F~(~l~)=0 for
the quantities ~i~. The functional determinant responsible for the solvability of the eqs. (3,32) at ~i = 0

is

�-~F~ ~�~2L nh�I_~~_.~0~� +�~-~-~ �h��~�
� Ov~Ov~ Bv~i A ab

Since z~= �(v~.� BAf(x)) we have B/Bv~= �a/B.~which shows that the matrix (3,33) is regular, if the
determinant (3,12) does not vanish for v~= 0. This implies that in a neighborhood of ~i = 0 the eqs.
(3,32) can only have the solutions ~i = 0. (i ~ = 0 is, of course, always a solution of the eqs. (3,32), but it
need not be unique.) The equality v~= O,~z�(x)is essential for showing that the canonical eqs. (3,25)
and (3,26) imply the Euler�Lagrange equations. This can be seen clearly, if we derive the Euler�
Lagrange equations from the form (3,30) directly: Interior multiplication with Oa gives

~(Ba)dill = OaL dx1 A dx2� dir~A d.~,.+ hba dcu� + 0(mod I[cu�~]). (334)

With

di~= ~fdv~ + dbi~ dz�~+ ~ dxv,

and because

= 0 for all a, ~, and dw�(.~l),£(2)) = 0,

if v~= B~za, the application of the 2-form (3,34) to the tangent vectors

~ ~=1,2,

gives

[~(Oa)dill] (.~1), £(2)) = OaL � ~ 8,.~B~Zb� air�� 8hz� �

= BaLd7T~/dx�=0.

3.3. Variational and characteristic systems

Before we discuss some applications and examples, let me point out an important structural

difference between the �variational� system {~(Oa) dill, i(3/3p~)dfll} of differential forms which deter-



HA. Kastrup, Canonical theories of Lagrangian dynamical systems in physics 45

mine the extremals in the case of 2 independent variables as discussed in this chapter and the
corresponding system {i(B,) dO, i(a/ap,) dO} in mechanics, as discussed in chapter 2:

In the latter case the 1-forms i(B,,) do, i(a/ap,) dO generate the characteristic Pfaffian system C*(dO) of
do, i.e. the extremals associated with the canonical form 0 coincide with the characteristic integral
submanifolds of the form dO, that is to say, in mechanics the tangent vectors

E�= a1+4~a,+A~�=at+~a,�.~i~
1.~� (3,35)

form a characteristic vector field associated with the form dO: The vector field (3,35) is annihilated by
the forms i(B,) dO and i(a/ap,) do.

The situation is different for field theories: The tangent vectors ~ = a~+ a~ZaBa+ B~p~a/0p~are
annihilated in pairs � as a 2-vector .E~l)A � by the (3n + 2) 2-forms

~(Oa) dill, i(a/ap~)d[2, i(O,~)dill, (3,36)

whereas the characteristic Pfaffian system C*(dill) is generated�see the discussion following eqs.
(1,23) � by

i(O,~)i(O~,)dill, i(O,~)~(Ba)dill, ~(Oa) i(Ob) dill,

i(O~)i(a/ap~)dill, ~(Oa) i(B/Bp~)dii. (3,37)

Each characteristic vector Y of the form dill, i.e. i(Y)dil = 0, is also annihilated by the 2-forms
i(V)dill, where V= a,~, Oa, O/Op�~, because i(Y) i(V)dil = �i(V) i(Y)dill = 0. However, if
i(Y) i(V) dill = 0, we cannot conclude that i(Y) dIll = 0.

A simple example [Lepage, 1942b, p. 256] may illustrate the situation: Take n = 1 and let L be of the
form L = T(v) � V(z) which is very common in physics. We then have p�� = IT�� and

11= Ldx1 Adx2+ IT1 WA dx2+ ir2dx1 A to

= �H dx� A dx2+ ir1 dz A dx2+ ir2dx1 A dz, to = dz � v~.dx��, H = ir��v~~� L. (3,38)

Then

dill = (a~Ldx1 A dx2 � dir1 A dx2 � dx1 A dir2) A to (3,39)

is a 3-form in the 5 variables x��, z and v~,j.~= 1, 2. It is obvious that to E C*(dil). The factor

p := a~Ldxt A dx2 � dir� A dx2 � dx� A dir2

~,2r
1 2 ~ 2 ~ 1=O~LdxAdx � dv~Adx� dx Adv~0v

1 8v~ 0v2 Ov~

in eq. (3,39) is a 2-form in the 4 variables x�� and v,~.It can have the nontrivial rank 4 or 2. Since the
determinant of the 4 x 4 skew symmetric matrix formed by the coefficients of the 6 basis vectors
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dx� A dx2, dx�� A dv~,dv
1 A dv2 has the value I(a

2L/av~av~)I2,we see that the form p has the rank 4, if the
matrix (B2L/Ov,~Bv~)is regular. In that case dill has the rank 5 and the integral submanifolds of the
characteristic system C*(dill) are 0-dimensional, whereas the integral submanifolds � the extremals � of
the variational system (3,36) in our example are 2-dimensional. This shows that the situation in field
theories is quite different from that in mechanics.

Let us call the system {i(V) dill, V = B,~,Ba, B/Bp~}of 2-forms on G2~~x R2~= {(x1, x2, z1, - . - ,

(vi, . . - , v~)or (pt, - . - , p~)}the �variational� system of 12. Only if 12 is a 1-form, its variational system
coincides with the characteristic system C*(dill).

The variational system generates an ideal I[i(V) dl?] in the algebra of forms on G2�� X R2�. All
elements of I[i(V)dill] vanish when restricted to any extremal £~. Since the ideal is generated by
2-forms, it will in general not be complete, that is, it will in general not contain all forms w

1 which
vanish on the extremals £~.For instance, the 1-forms ~a = dza � v~dx�~vanish on £~, but do not
belong to I[i(V) dill] [Dedecker, 1977a}. Furthermore, there are questions like this: Are the 1-
dimensional integral elements A��B~.+ BaBa + C~B/Bp~regular or singular [E. Cartan, 1945, ch. IV]? Is
the ideal I[i(V) dill] in involution with respect to the variables x�� [E. Cartan, 1945, ch. V]? That these
problems are not trivial can be seen from the example (i) below.

3.4. Examples and applications

The essential new element of the canonical framework introduced above are the coefficients
hab(x, z, v) = flab(x, z, p) which occur in the definition (3,9) of the canonical momenta and in the
Hamilton-function (3,10). Up to now these coefficients are completely arbitrary. Before we try to
identify the origin of this arbitrariness, let us discuss some examples:

(i) hab = 0.
In this case we have

p~=Ir~, Hrr~v~i�L.

If the Legendre transformation v~-~ ir~is regular, i.e. if the matrix (B
2L/Bv~Ov~)is regular, we can

express H as a function of x, z and ir and the canonical equations (3,25) and (3,26) take the form

= BaH, B~za= =: ~ (x, z, ir). (3,40)
Bir~

The choice hab = 0 is the conventional one in physics. In the mathematical literature this case is called
the canonical theory for fields of DeDonder and Weyl [DeDonder, 1913 and 1935; Weyl, 1934 and
1935]. For a system with just one real field variable this theory is the only possible one, because there
can be no nonvanishing hab.

It is instructive to have a closer look � for details see [von Rieth and Kastrup, 1983] � at the
variational system I[i(V) di2

0] which is generated by the 2-forms

j(Ba) dill0 = BaH dx
t A dx2 � dirt A d~.=: Aa, (3,41a)

i(B/Bir~)dill
0 = to� A d~=: ~, ~ = dz� � ~, dx��, (3,41b)



HA. Kastrup, Canonical theories of Lagrangian dynamical systems in physics 47

i(B~)d1llo to� A (a~Hd~+ e.~dir~)�q3~ (3,41c)

= (dH � a~Hdxv) A d1~,.+ e,~dz� A dir~=: cup.

The differential system (3,41) has some peculiar properties:
1. We have

dAa = d(OaH) A dx� A dx2, dw~= �d(~)A dx1 A dx2,

dw~= �d(a~H)A dxt A dx2,

and since

dx�� A = dirt A dx1 A dx2, dx�� A cu�~= �~ dza A dx1 A dx2

we see that dAa, dw~and dw,~belong to I[Aa, to~,to,~].

2. The 3n + 2 forms )ta, to~and to,, are linearly independent.
3. If v = A�a,, + B�Oa + C~3/3ir~is an arbitrary tangent vector, then it is a 1-dimensional integral
element of the system (3,41) � which contains no 1-forms � and its polar system [E. Cartan, 1945, ch. IV]
i(v) Aa, i(v) to�,,, 1(v) to,, has at most the rank 2n + 2! This follows from the relations

A�i(v)cu~.=(B��A~ç~�)A�dl,,

and

A� i(v) to,, + B� i(v) Aa + C~i(v) to�,, = i(v) i(v) dill
0 = 0,

which show that at most 2n + 2 of the 1-forms 1(v) Aa, 1(v) w~,i(v) to,, are linearly independent. The
maximal rank 2n + 2 is realized, e.g., for the vector v = 3/Ox�.
4. For V(,,) = a,, + ç~3~+ C~,a3/3ir~the rank of its polar system is at most 2n + 1, because now
~ i(v~)cu~= 0. Thus the vectors ~ are singular integral elements [E. Cartan, 1945, p. 64].
5. The rank of the reduced polar system [E. Cartan, 1945, ch. V], which is obtained from the polar
system by setting dx� = 0, /L = 1, 2, in i(v) ~ i(v)to�,, and i(v) to,,, is at most 2n + 1 and 2n for the V~~)

of the previous number 4. Thus the variational system (3,41) is not in involution with respect to the
variables x� and x

2 [E. Cartan, 1945, ch. V]!
6. The following �prolongation� avoids the above �diseases�: If one adjoins the 1-forms to� � which
we know to vanish on the extremals � and their exterior derivatives dw� to the ideal I[A~,w~,to,,], then
the new ideal is generated by the 3n forms w~l,d~�~and A,,, because to�,, and to,, lie in the ideal
I[w�, dw�, An]. The rank s

0 of the linear equations i(v) to� = 0 in general will be n and the solutions v
are of the form

v=A�3,,+A°�3,,+C~,,3/3rr~, (3,42)

where the 2n + 2 coefficients A�, C~are arbitrary.
The maximal rank 5o + s~of the polar system to�, i(v) dcu�, i(v) A,, with v as in eq. (3,42) is~3n. As the

�provided the matrix (d
2HIdir~airs) fulfills certain regularity conditions.
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maximal rank of the corresponding reduced polar system is 3n, too, the differential system generated by
the forms to�, dw�~�and Aa is in involution with respect to the variables x! Let us, therefore, call the
differential system I[cu�, dw�, Aa] the �proper variational system�!
7. We remark further that dill0 = ~ A A~which implies to� A dAa = dcu� A Aa.

(ii) hab = const.  0.
In this case we have p~ ~ but the terms in the equations of motion (3,25) and (3,26) involving the

parameters hab explicitly drop out. The reason is the following: For h,,,, = const. the last term in eq.
(3,11) can be written as

~hab dz� A dz� = ~d(habZ� dz�), (3,43)

and therefore this term does not contribute to dIll.
In more conventional language the terms involving the parameters hat, may be interpreted as follows

[Debever, 1941]: Defining

~-T-:= B,, + 1)�,, Ba + ~ ~ V�~,,=

we have, with h~j~=

h�~Kv�,, v~= h�~/d(z�v~)/dx�.

If in addition dh~/dx�= 0, e.g. if the h~are constants, then

~ (3,44)

i.e. the term h~v�,,v~is a total divergence! This implies that the Lagrangian

L*(x, z, v)= L(x, z, v)�~h�~Va,, V~ (345)

gives the same field equations (3,28) as L itself, but the canonical momenta are

BL*/Bva,,= ir~-h~ ~

The procedure of adding a �surface� term (3,44) to a given Lagrangian L can be used in gauge
theories in order to construct a regular Legendre transformation v�,, �*p~,when va,, ~ ir~ is singular.
Example: E-dynamics in I space and 1 time dimension: For this system we have

L= F,,~F�~j~A�~(F01)
2j~A�,

x=(x°,x�), x-x=(x°)2�(x�)2,
(3,46)

F
0, = �F~0 B0A, � B,A0 = E,

v~=B,,A�, ~,a=0,1,
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from which we obtain

irg=0, ir~=B0A
1+B

1A°=�E,

ir?=B0A
1+B

1A°���E, ir~.�~0.

For the coefficients ~ we choose

ha~�AEa~, A=const.

We then get for the canonical momenta (3,9):

p°0=AB,A�, p~=(1�A)B,A°+30A�,

p~= (1� A) 30A
1 + 3

1A°, p~= A 30A°. (3,47)

The determinant of this Legendre transformation has the value A
3(2� A) [Dedecker, 1977], i.e. the

transformation is singular for A = 0� which is well-known � and for A = 2� a case which will be
discussed in chapter 5 �. Let us discuss the choice A = 1 in more detail. We here have

p~=3
1A

1, p°
1=30A�,

p~= 3~A°, p~= B0A° (3,48)

and
H ~(p?+p~,)

2+(p°~p~�p?p~)+j
0A�

= ~((p?)
2+(p~)2)+pgp~+j~Aa. (3,49)

The canonical equations 3,,A�� = 3H/3p~are just the eqs. (3,48) and the equations

= �OH/aA� =

are the Maxwell equations

8,E=j°, 3
0E= �j

1.

The Lagrangian (3,45) takes the form

L* =L+ ~ap3
0A�3iA~

= �~3,,A�O�AO, +~(3,,A�)
2�j~A�. (3,50)

Of special interest in the context of this simple gauge theory is the behavior of the form

ill = L dx°A dx� + IT~to� A dx1 + ir~.dx°A to� + ~ to� A to�~ (3,51)

under gauge transformations A� �* A� + a�f(x):
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If the variables v~ltransform as

v�,, �~ v�,, + B�B,,f(x),

then the forms cu� = dA� � v�,, dx� are gauge invariant! As the momenta ir~are gauge invariant, too,
the form (3,51) is gauge invariant, if the Lagrangian L and the coefficients ~ are gauge invariant.
Thus, for Ia = 0 and our choice h,,1, = �e~~the form (3,51) is gauge invariant!

On the other hand, in the canonical representation,

12 = �H dx°A dx
1 + p°~.dA� A dx� + p~dx°A dA� + ~h,,

1,dA� A dA� (3,52)

each individual term is gauge dependent, whereas their sum is gauge invariant, because it equals the
sum in eqs. (3,51)!

This behavior of the form ill under gauge transformations becomes even more striking, if we consider
a system, where the potentials A� are coupled to a complex scalar matter field ~ with the gauge
invariant Lagrangian

L = �~F,,~F��+ (a,, � iqA,,)p* . (B� + iqA��)çt � ,.,~
2(p*co, (3,53)

for which we obtain

ir� = BL/OB,,co = (3� � iqA�) (p 54)

= aLIBa,,ço*=(B~+iqA~)co.

We define the forms

toq, = d(p � ~,, dx�, cii~= d~ � ~,, dx�,

and assume that the quantities ~�,,, ~,, transform under gauge transformations

A��*A� + 3�f(x), (p�~exp{�iqf(x)}~, ~,*_,.exp{iqf(x)}(p*

as follows

(p,,~exp{�iqf(x)} ((p,, � iq 3,,f(x) ~),

~,,�÷exp{iqf(x)}(~,,+iqa,,f(x)p*). (3,55)

Then the forms cu~,,,~ transform �covariantly�:

cu~�~exp{�iqf(x)} tow, i~~ exp{iqf(x)} t;5q,

and since

�~ exp{iqf(x)} ir�, *� �~exp{�iqf(x)} *�,
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the terms IT~�toQ and ~�th~ are invariant under gauge transformations! Thus, the form

(2= L dx°A dx� + ir~to� A dl,, � ~Ae~1,to� A to

1, + ir� to~ A dl,, + ~� to,, A dl,, (3,56)

is gauge invariant!
Let me conclude this preliminary discussion of applying the general canonical framework discussed

above to 2-dimensional E-dynamics by the following remark:
Since the field F~

1,is antisymmetric in the indices a and f3, it is possible to use h,,1, = AF,,1,, A = const.!
Since F0, = �(B0A� + 31A°),this is an example for h,,t, depending on v�,,. For the canonical momenta
(3,9) we get in this case

p°~= A(3,A°+30A�) 3,A�, p? = (B,A°+ 30A�) (1� A 3,A°),

= (3,A°+30A
1) (1� A 3

0A�), p~= A(3,A°+B0A�) 30A°, (3,57)

i.e. the Legendre transformation is nonlinear. Its functional determinant has the (gauge invariant) value

2A
3(B

0A� + 05A°)
3(1� A(3

0A� + 3,A°))= �2A
3E3(1 + AE).

It follows from the eqs. (3,57) that

p°
1+ p~= 2(3,A°+ 30A

1) � A(3,A°+ 3
0A�)

2.

The roots of this equation are

3,A°+ B
0A� = (1 ±[1�A (p~+ p~)]~

2). (3,58)

Inserting the values (3,58) for 3,A°+ OOA1 into the eqs. (3,57) immediately gives the quantities 3,,A� as
functions of the momenta P~a which allows to calculate H = H(x, A, p) etc.

(iii) A nontrivial unique choice of the coefficients h,,b is obtained as follows: By means of the 1-forms

a� = L dx� + ir~to�, 0�� = �H dx� + p~dz� (3,59)

we can construct the following form of type (3,5) or (3,8) respectively:

(2~= a� A a2

= Ldx1 A dx2+ ir~to� A dl,, +~(ir~ir~� ir~ir~)to� A tob

=_~O1AO2 (3,60)

= �H dx� A dx2 + p~dz� A dl�� � (p~p~t,� p~p~)dz� A
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The form L2~is unique among all possible forms (3,5), because it is the only one which has the
minimal rank 2! That the forms (3,60) have rank 2 is obvious. On the other hand, assume that the form
(3,5) has rank 2. Then there exist 2 Pfaffian forms p(~~),~.t = 1, 2 such that [2= p(~A ~(

2), which implies
hA (2= 0. Writing out this last equation for the expression (3,5), or (3,8) respectively, the coefficients of
dx� A dx2 A to� A toe�, or dx� A dx2 A dz�� A dz� respectively, have to vanish. This gives the same values for
hab as in eqs. (3,60),

The form (3,60) defines Carathéodory�s canonical theory for fields, which will be discussed in detail in
chapter 5.

3.5. The classification of canonical theories according to the rank of their basic canonical 2-form

Let me make some preliminary comments on the origin of the possibility for introducing those
arbitrary coefficients h~binto the canonical reformulation of a system defined by a Lagrangian L: First
clues one can see already in mechanics: If we replace a given Lagrangian L(t, q, 4) by L*(t, q, 4) =

L(t, q, 4) + df(q)/dt = L(t, q, 4) + 4� B,f, then the Euler�Lagrange equations of L and L* are the same,
i.e. the second-order differential equations, which determine the dynamics of the system, are not
affected by the additional term df/dt in L. However, for the canonical momenta p, we have

p~= ~� = BL/B4~+ B,f = p, + B,f,

that is to say, the term df/dt does change the definition of the canonical momenta! We see therefore
that already in mechanics the canonical reformulation of n second-order differential equations by a
system of 2n first-order differential equations is not unique. We have seen that in field theories the
corresponding freedom is much more substantial if n  2!

In view of this large freedom to introduce different canonical theories for fields, depending on the
choice of the coefficients hab, the question arises, how to classify these theories. Probably the most
important classifying criterion is the rank of the form i�ll for a given set of coefficients has,. The reason
is the following: Since dIll = 0 on the extremals £~, the rank r of ill coincides with its class, that
is to say, the integral submanifolds associated with the form (1 itself have the dimension
n + 2 � r, r  2. In mechanics the integral submanifolds associated with the canonical form U are the
n-dimensional wave fronts S(t, q) = constant. We see that the rank of the canonical form Ill is decisive
for the structure and dimension of the �wave fronts� associated with a given �family� of extremals!

Before we discuss the general case let us look at some examples:
(i) If n = 1, i.e. if we have only one dependent variable z, the rank of 12 is always 2, because the rank

of a p-form over a (p + 1)-dimensional space is always p [Godbillon, 1969, p. 29].
(ii) If all hat, vanish, the DeDonder�Weyl canonical form

12
0=a�Adl,,�Ldx�Adx

2

� see eq. (3,7) � has rank 4 (for n  2), because it is expressed by the 4 linearly independent Pfaffian
forms dx� and a�. Thus, the integral submanifolds of i?~in general have the dimension 2 + n � 4 =

n�2!
(iii) Carathéodory�s canonical form (3,60) has rank 2. It is the only canonical form which allows for

n-dimensional wave fronts!
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(iv) Consider the case n = 2, h,2 arbitrary. Then the determinant of the skew symmetric coefficient
matrix

/0 �H p~ p~
( H 0 �p�j �p~
It �P2 l�s 0 7J12

Pi 7712 0

of the canonical form

12 = �H dx� A dx
2 + p~dZa A dl,, + ~52 dz� A dz2 (3,61)

has the value

(H~,
2+jp~)

2, ~

Thus, the form (3,61) has rank 4 iff H~
12+p~ 0 (the singular case ~)12= �~p~/His just that of

Caratheodory, compare eq. (3,60)). The associated wave fronts are therefore 0-dimensional!
Let us turn to the general case now. For this purpose we express the forms 12 in terms of the

canonical variables p, ~ and H by means of the forms 0� = �H dx� + p~dz�:

12 = 0� A dl,, + H dx� A dx
2 + ~7)ab dza A dzb. (3,62)

Let w = w~�~3,,+ W”Oa be a vector field associated with the form ii. This means that w has to obey the
equation

1(w) 12 = �02(w)dx� + 0�(w) dx2+ (w~p~� w12�p~+ }V�flba)dZ� = 0

which implies the n + 2 homogeneous equations

O�(w)= �Hw°�~+p~w�= 0, p, = 1,2, (3,63a)

� w�2~p~+ w�i~t,~= 0, a = 1,.. ., n (3,63b)

for the components ~ W”.

We know from chapter 1 that there are n + 2— r linearly independent vector fields W(U), O~=

1, . . ., n + 2— r, if (2 has the rank r. Thus the matrix of the eqs. (3,63) must have the rank r, too.
In the case of Carathéodory�s form (3,60) the associated vector fields have to obey only the 2 eqs.

(3,63a). A system of n linearly independent solutions of these equations are

W(a)P~B,,+H3a, a=1,...,n. (3,64)

We shall see in chapter 5 that in Carathéodory�s canonical theory at each point (x, Z) E G2~�the
tangent vectors (3,64) of a wave front and the tangent vectors e(,,) = (3~,, 6~, v~,.. ., va,,) of an extremal
span an (n + 2)-dimensional vector space, if HL 0, because the determinant
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1E2 p \
(e(l), e(2), w(,),..., W(~))~= ~ v HER) p = (pt), v = (v,,)

has the value �LH~, in complete analogy to eq. (2.41) from mechanics. Thus, Carathéodory�s
canonical theory for fields has the same transversality property as the canonical theory of mechanics.
This is no longer the case, if the rank of 11 is larger than 2! In the DeDonder�Weyl case, where all he,,
vanish, the eqs. (3,63b) imply w~�~= 0, which means that the corresponding wave fronts lie in the planes
x� = const. The other components w� have to obey the two equations w�p~= 0. Thus, there can be
only n � 2 linearly independent vector fields associated with the form 12~and we loose the nice
transversality properties we have in mechanics and in Carathéodory�s theory!

The rank of the form ill will be essential for the properties of Hamilton�Jacobi theories for fields to
be discussed in the next chapter.

3.6. Bibliographical notes

Terms of the type llab(V�i�1
4 � v~v�/)where first discussed in 1859 by Clebsch in a paper on the �2.

variation� of a variational integral with several independent variables. Clebsch noticed that for constant
hab the integrand h,,t,(v�/v~� v~v�/)in the action integral could be transformed �away� into a surface
term, which nevertheless would change the matrix (B2LJBv�,, Bv~),which is essential for any discussion of
the 2. variation, into (B2L/Bv~3v~+h~).

More than 40 years later the subject was taken up by Hadamard [1902 and 1905], again in the
context of the 2. variation.

In 1929 Carathéodory�s fundamental paper on a canonical theory for fields appeared, in which the
coefficients hab have the value (ir~,ir~� ir~rrj,)JL.This theory was further developed by Boerner [1936,
1940a, b, 1953] and in an important contribution by E. Holder [1939].

Lepage was the first, who, in a series of fundamental papers in the midthirties and early forties,
discussed the general case in terms of Cartan�s exterior differential calculus [1936a,b, 1941 and 1942a,
b]. Whereas Lepage analyzed the subject merely on the local level, it is mainly the merit of Dedecker,
to investigate the global aspects (bundle structure, algebraic-topological properties etc.) of Lepage�s
ideas [1950, 1951, 1952a and b, 1953, 1957a and b, 1977a�d, 1978]. An interesting contribution to global
aspects of Lepage�s theory is due to Liesen [1967].

Exterior differential (p+ 1)-forms i1~± ,and the integral submanifolds of �associated� p-forms
i(Y)i2~+,were discussed by Gallissot in the context of fluid mechanics [19581.See also Nôno and
Mimura [1972and 1975].

As to the DeDonder�Weyl calculus of variations for fields see KlOtzler [1970].An exposition of the
DW theory in terms of modern differential geometry was given by Goldschmidt and Sternberg [1973].

In a series of interesting papers a �Warsaw� school of mathematical physicists has developed and
investigated a �multi-symplectic� or �multi-phase-space� approach to classical field theories in the
framework of modern differential geometry. It uses � essentially � the DeDonder�Weyl form I2~as a
multi-symplectic canonical form, with some modifications in mind [Trautmann, 1967, 1972; Sniatycki,
1970; Kijowski, 1972, 1973, 1974, 1977; Kijowski and Szczyrba, 1976; Kijowski and Tulczyjew, 1979;
Gawedzki, 1972; Gawedzki and Kondracki, 1974; Tulczyjew, 1974; Szczyrba, 1974, 1976, 1977, 1981].
Additional references can be found in [Kijowski and Tulczyjew, 1979].

A related approach is due to Garcia and Pérez-Rendón [Garcia and Pérez-Rendón, 1969, 1971, 1978;
Garcia, 1974, 1977]. See also Garcia et al. (eds.) [1980] for additional papers on the subject. The
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DeDonder�Weyl canonical form 1ll~has been discussed by Aldaya and de Azcárraga [1980]too. Recent
discussions on global aspects of Lagrangian field theories and their Hamiltonian structures are
contained in papers by Gelfand and Dikii [1975, 1977], Takens [1977, 1979], Vinogradov [1977, 1978],
Kupershmidt [1980]and Anderson and Duchamp [1980].

4. Hamilton�Jacobi theories for fields

4.1. The Hf theory forfields of DeDonder and Weyl

The main purpose Lepage had in mind when introducing the equivalence relation dl? 0 (mod
I[to�]) was the concept of Hamilton�Jacobi theories for fields: We saw in mechanics that the property
dO = 0, 0 = �H dt + p1 dq�, on the extremals, combined with Poincaré�s lemma (see ch. 1), implies the
basic HJ relation dS(t, q) = �H dt + p~dq�. In the same way we can conclude from dill 0 (mod I[to�])
that ill is locally an exact 2-form on the extremals l~,that is to say 12 is expressable by differentials
dS�(x, z), dS

2(x, z), dx�, dx2, - . - ,where the number of these differentials necessary for expressing ill is
equal to the rank of 11. Since ill is a closed form, its rank is equal to its class.

For instance, in the case of Carathéodory�s theory�see eqs. (3,60)�, where Ill = 12~has rank 2, we
have

2 1 1 2dS (x,z)AdS (x~z)=�~j-OAU - (4,1)

We shall discuss this CHJ relation in detail in the next chapter.
As the DeDonder�Weyl form 11 = 1ll~ has rank 4, we here have

u2~= dS�(x, z) A dx2 + dx� A dS2(x, z)

= �H dx� A dx2+ ir~dz� A dl,, (4,2)

which implies

= 3,,S�(x, z) =: t//~x,z), (4,3a)

3,,S�(x, z) = H(x, z, ir = tfr(x, z)). (4,3b)

Eqs. (4,3) are obviously simple generalizations of the relations p, = 3

1S, 3~S + H = 0 in mechanics. We
discussed already in the last chapter � and we can infer it again from the expression (4,2) � that the form
~lllhas deficiencies with respect to the transversality properties between extremals and the wave fronts
to be calculated from the eqs. (4,3): According to eq. (4,2) the wave fronts are given by S” (x, z) o�� =

const., and x~= const., because

i(w) ho = dS
1(w) dx2 � w~2)dS1 + w°~dS2 � dS2(w) dx� = 0,

� (,�).t + �~ .�

� U(,,) a~ (J(,,).~UfU

dS� (w) = w~�~3(~)S��+ w� 3,,S�
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implies

w”~’=0, ~=I,2, w�B,,S��w�ir�~=O,

which means that the wave fronts associated with 12~are (n � 2)-dimensional, not n-dimensional and
that they lie in the �characteristic� planes x� = constant.

Despite these transversality problems the eqs. (4,3) have a rather simple form which allows one to
illustrate a number of important aspects of HJ theories for fields in a rather straightforward way:

Eq. (4,3b) is a first-order partial differential equation for two functions S�(x, z). Thus, we can choose
one of these functions, say S2(x, z), with a large degree of arbitrariness and then solve eq. (4,3b) for
S�(x, z). The main restriction to be imposed on any choice of S2 is the �transversality condition� that at
each point (x, z = f(x)) the derivatives BaS2(x, z) have to be equal to the canonical momenta ir~(x)of
the extremals under investigation.

There is another important difference between HJ theories in mechanics and those in field theories
which should be stressed from the very beginning: We saw in chapter 2 that any solution of the HJ
equation leads to a system

= (p~(t,q) = (t, q, p = BS(t, q))

of first-order differential equations, the solutions of which, q�(t) = f�(t; u), u = (u�,. . ., u�), constitute an
n-parametric family of extremals which generate S(t, q), if (Bq�/Bu�)j ~ 0: We can calculate S(t, q) by

computing

~(t, u) = J dtL(~f(~u), B,f(t; u)),

solving the equations q~��f1(t; u) for U”:
0k ~k(~,q) and inserting the functions x�(t,q) into

o-(t, u): S(t, q) = o(t,x(t, q)).
This procedure is in general no longer possible in the case of field theories. The reason is the

following: In the DeDonder�Weyl theory we have v ~, = 3H/Brr�~.Given now any solution 5” (x, z) of
the DWHJ eq. (4,3b), we can define the �slope� functions

BH
~p~(x, z) := -i-�- (x, z, ir~= 3,,S�(x, z)). (4,4)

However, the partial differential equations

B,,z�(x)=(p�,,(x,z) (4,5)

will only have solutions Z� = fa(x) if the integrability conditions

(4,6)
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are fulfilled! The conditions (4,6) impose stringent restrictions on the solutions S�(x, z), which can
already be seen from the following simple example:

From L = ~(v0)
2� ~(v,)2� V(z) we obtain H = ~(p°)2� ~(p�)2+ V(z) and the DWHJ equation

3,,S� + ~(a~S°)2� ~(B~S�)2+ V(z) = 0. (4,7)

Furthermore, we have

(po(x, z)= B~S°(x,z), (p
1(x, z)= �3~S�(x,z), (4,8)

and the integrability conditions (4,6) mean here

_~25O a~s~+a~B~S°=~251 3~~o_BoB~S�. (4,9)

The �separating� ansatz

S�(x,z)= h�(x)+ W�(z) (4,10)

gives for the eq. (4,7):

B,,h�(x)+~(3~W°)
2�~(B~W�)2+V(z)= 0 (4,11)

and for the conditions (4,9):

= W�W°� , W°�:= 3~W°etc - (4,12)

This equation has the solution

W°=aW�+b, a,b=const., (4,13)

where the additive constant b is irrelevant and can be taken as b = 0. Because v
0 = W°�v, = � W

1, the
ansatz (4,10) allows only for extremals z(x) with the property Boz(x)/3,z(x) = const., i.e. the extremals

are of the plane-wave type z(x) = f(ax°+ ~3x5),a, /3 = const.
It follows from the eq. (4,11) that

�3,,h�(x) = ~A = const. = ~(B~W°)2� ~(B~W�)2+ V(z). (4,14)

This equation and eq. (4,12) can be satisfied by the ansatz

S°=�~Ax°+wW(z), S� = �~Ax�+k W(z), (4,15)

where to, k = const. With /22 = to2 � k2, the eq. (4,14) implies

W�(z) = 1(A - 2V(z))�2, W(z) =! J d2 (A � 2V(2))�2. (4,16)
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Well-known examples for V(z) are:

V(z) = ~~s
2Z2, (4,17a)

V(z) = ~A(z2�a2)2, (4,17b)

V(z) = a(1 � cos(f3z)), (4,17c)

the associated field equations of which have, of course, not only solutions of the type z = f(cux°� kx�).
Without the restrictions (4,9) it is easy to obtain more general solutions of eq. (4,11). For instance, we

can take for W’(z) an arbitrary function and then determine W°(z)from

W°�(z)= [A + (W�)2 � 2V(z)]�2.

Thus, there are wave fronts which cannot be generated by extremals!
Suppose now that we have found solutions S�(x, z) of the DWHJ eq. (4,3b) such that the slope

functions (4,4) do obey the integrability conditions (4,6), then the solutions Z� = f� (x) of the first-order
eqs. (4,5) are extremals, i.e. they are solutions of the equations.

dir~/dx�= BaH, (4,18)

too.

Proof: Since
ir~(x)=i/J~(x,z(x))=BaS�(x,z(x)),

we get

dir~/dx�= B,,B,,S�(x, z(x))+ BbBaS�(x, z(x)) B,,z�(x).

On the other hand we have

B,,S� = �H[x, z(x). ir = BS(x, z(x))]

and

~DaH:BaH+~~Bt,BaS~. (4,19)

We therefore get

B~H+(B,,zb(x)_~) B~Bt,S� (4,20)

and see that the canonical eqs. (4,18) are a consequence of the eqs. (4,4).
In the context of the integrability conditions (4,6) the following notion appears to be useful: We shall
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call an extremal Za = fa(x) �weakly embedded� in a �geodesic field� S�(x, z), i.e. in a solution of the
DWHJ eq. (4,3b), if the equality (4,3a) holds for the points (x, z = f(x)). Such a geodesic field does not
have to obey the eqs. (4,6) outside z = f(x). If, however, the functions S� (x, z) do fulfill the conditions
(4,6) in an open neighborhood of (x, f(x)), we shall call the extremals, or a family of them, �strongly
embedded� in the wave fronts 5� (x, z). It can be shown that any extremal in general can be embedded
weakly (see below), but not strongly.

4.2. Conserved current associated with a parameter-dependent solution of the DWHJ equation

There are other important properties of the HJ-theory in mechanics which allow for generalizations

in field theories:
If S(t, q; a) is a solution of the HJ equation which depends on a parameter a, then the quantity

G(t,q;a):= BS(t,q;a)/t9a (4,21)

is a constant (of motion) along such an extremal for which the relation p,(t) = B,S(t, q(t); a) holds

[Whittaker, 1959, §148; the statement of Gelfand and Fomin, 1963, p. 90, that the quantity G in eq.
(4,21) is a constant of motion for any extremal is not correct !]:

~jG(t,q(t);a)=0, (4,22)

where q3(t) = f�(t) is an extremal. In the language of differential forms the proof of this important
theorem goes as follows: We have

dS(t, q; a)= B,S dt+ 3,S dq� + (t9S/Ba)da

=�H(t,q,p=tfi(t,q))dt+t/i,(t,q;a)dq~+Gda, t/i,=3,S(t,q;a). (4,23)

Exterior differentiation of eq. (4,23) gives

0 �[a,Hdq�+~dt/ij(t,q; a)] A dt+d~(t,q; a)A dq�+dG Ada. (4,24)

Suppose q� = q1 (t) is an arbitrary curve, not necessarily an extremal, then, because of

d~=3,~dt+3t,t~dq�+~da, dq�=4�dt,

it follows from eq. (4,24) that

[4� �~(t, q, ~i(t,q))] ~ G = 0. (4,25)

Thus, if the curve q(t) obeys the equations 4� = BH/Bp,, eq. (4,22) follows immediately from eq. (4,25).
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Noether�s theorem is a special case of the important property (4,22): Let

t�~I(t,q;a), q��~4�=4~(t,q;a)

be a 1-parameter transformation group of G�~�= {(t, q)} into itself such that

I(t,q;a =0)= t, 4�(t,q;a �0)=q�

and dS(I, 4) = dS(t, q). Then ~ q; a) = S(i~ 4) is a solution of the HJ equation, if S(t, q) is a solution.
We can identify the group parameter a in S(t; q; a) with the parameter a of the above theorem and

obtain

G=~=~+~-
Ba BtBa B4~Ba

Defining

T(t,q)=~ , Q�(t,q)=~~ , (4,26)

and observing that

=B~S,
Bt B4

3 ~

we obtain for G at a = 0

G = B,ST + B SO� = �HT + p,Q�, (4,27)

which is just the usual expression obtained by the standard derivations of Noether�s theorem [e.g.
Gelfand and Fomin, 1963, section 20].

The conservation of the quantity (4,27) can be derived in a more compact way by observing that the
invariance of dS(t, q) under the 1-parameter transformation group is equivalent to the statement that
the form dS(t, q) is invariant with respect to the vector field Y = TB, + Q�BJ, which means � see the
discussion following eq. (1,16) � that

L(Y)dS=0.

Combining this equation with the formula (1,14) gives

di(Y)dS=d(TB,S+ Q�BJS)

= d(�HT + p,Q�) = 0, (4,28)

which is the required result.
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In order to make the preceding discussion more complete, I briefly recall the derivation of Noether’s

theorem without reference to the HJ theory: suppose that

L(Y)O=dh, O=�Hdt+p,dq�,

where h = h (t, q, p) may be a function of t, q and p, depending on the (Killing) vector Y (in the
discussion above we made the simplifying assumption that dh = 0). Because � see eq. (1,14) � L( Y) 0 =

i(Y)dO+di(Y)0 and since i(Y)dO=0 on the extremals�see eq. (2,33)�we have

d[i(Y)0�h]=d(�TH+ Q�p,�h)=O,

i.e. �HT+p,Q� � h is a constant of motion!
The generalization of eq. (4,22) to field theories takes the following form:

If a solution 5� of the DWHJ eq. (4,3b) depends on a parameter a, 5� = 5� (x, z; a), then the

functions

G�(x,z;a)=3S�/Ba, /2=1,2, (4,29)

are the components of a current which is conserved �along� the extremals ~ = fb (x):

(x, z = f(x); a) =0. (4,30)

The proof is completely similar to that in mechanics:

Inserting dS� = 3,,S� dx� + 3bS~ dz� + (t9S�/t9a) da into dS’ A dx2 + dx� A dS2 yields

dS� A dx2 + dx’ A dS2 = 3,,S� dx� A dx2+ 3bS~dzb A dl,, + G� da A dl,,

= �Hdx� A dx2+ t~i~dz� A dl,, � G� dl,, Ada, dl,, = e,,~dx”. (4,31)

Exterior differentiation of eq. (4,31) gives

o=_(audzb+d~(x,z;a))Adx1Adx2+d~gAdzbAdl,,_dG~ Adl,, Ada. (4,32)

If z� = fb(x) is an arbitrary smooth function of x, then eq. (4,32) becomes

0 = ~ da A dx� A dx2. (4,33)

Since an extremal ~ = fb(x) obeys the equations 3,,z� � 3H/3ir~= 0, the continuity eq. (4,30) follows

immediately from eq. (4,33).

Examples:
The solution (4,15) depends on the parameters A and k. The current associated with the parameter
Ais
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G°A= ~ _~x0+~~Jdz(A_2V(z))_h/2,

(4,34)

G~,= ~�= �ix� + ~-~-Jdz (A � 2V(z))�12.

Since

¶:4= �~+~~(A�2V(z))�2 Boz(x) =

dG~. 1 1k2

dx� � 4 2p~�

the_ current (4,34) is indeed conserved. For V(z) = ~L2Z2, A >0 and the extremals z =

(\/A//2) sin(tox°� kx�), the current (4,34) becomes trivial:

G°A= � x°+ ~ arcsin(/2z/VA)= � x°+ ~ (tox°� kx�),

G~=�~x1+~�-~(tox°�kx�).

The conserved current associated with the parameter k is

G°~=~-=~-W(z), G’k=~2~-=W(z). (4,35)

It is important to keep in mind that the currents (4,29) in general are not conserved for arbitrary
solutions of the field equations, but only for those which are embedded at least weakly in the special
geodesic field S�(x, z; a): For the first term in eq. (4,33) to vanish it is necessary and sufficient that we
have B,,f� = p~,(x,z) for z� = fb(x) where (p~,(x,z) is given by eq. (4,4). The above examples of
conserved currents may not look very interesting. However, there is the following intriguing possibility:

Imagine that one can find a solution 5� (x, z) which depends on an arbitrary function. Then it is
possible, in principle at least, to generate an infinite number of conserved currents. This might be of
interest for the integration of the system (Takhtadzhyan and Fadeev, 1974; Pohlmeyer, 1976; Thacker,
1981].

Before we come to Noether�s theorem for field theories, let me make two remarks:
(i) In terms of differential forms the continuity equation for a current G� can be formulated in the

following way: If we define the current 1-form

G = G� dl,,, (4,36)

the continuity equation dG�/dx� = 0 can be written as

dG=~~~dx1Adx2=0. (4,37)
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(ii) Suppose z� = f� (x) is a function such that the Legendre transformed 3,,z� (x), namely ir~(x) =

3~S�(x,z = f(x)), obeys the eqs. (4,3), then we have the relation

L(x, z(x), 3,,z(x)) = ir~3,,z�� H = BUS� B,,z� + ö,,S� = ~J~-(x, z(x)). (4,38)

Historically the eq. (4,38) was the starting point for the Hamilton�Jacobi theory for fields introduced by
DeDonder and Weyl, respectively: It allows one to express the integral f L dx� dx2 over a region G by the
integral f S� dl,, over the boundary aG!

Noether�s theorem for fields can be obtained as follows: Let

x”—~”=~”(x,z;a), z”—~”=2”(x,z;a),

I”(x, z; 0)= x”, 1”(x, z; 0)= z�,

be a 1-parameter transformation group which leaves

= dS� A dx2 + dx� A dS2

invariant. If we define the Killing vector

32�
X�~~ , Z� , YX�3,,+Z�Ba

Ba ~=o Ba a=o

the invariance of i1~,means

L(Y) h2~=0,

or, because of eq. (1,14)

d(i(Y) l~)= 0, (4,39)

which implies that i(Y) ~ is a conserved current 1-form on the extremals:

For Z� =f�(x) we have
i(Y)1~o=G� dl,,,

(4,40)
G� dS�(Y)+ S�� ~ X�~dS~/dx�

= X� (BPS� + ~ dS°/dx°� dS�/dx�) + Z� 8a5�.

Using the relation (4,38) and

T~= ir~v�~� = dS�/dx� � BPS� � ô~dS�/dx�~, (4,41)

the components G� of the current (4,40) can be written as
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G� = � T~X�+ ir~Za. (4,42)

Without using the HJ theory Noether�s theorem is obtained as follows: Suppose that

L(Y)[20=dh, i10=a�dl,,�Ldx�Adx
2, a�=Ldx�+ir~to�,

where h = h�(x, z, ir) dl,, is a 1-form depending on the Killing vector Y As L(Y) 12,, = di(Y) flo = dh

on the extremals, where i(Y) d12
0 = 0, we have for the extremals Za = fa(x) the current conservation

dG=0, G=i(Y)fl0�h=G�dl,,

=(�X~T~+Z�ir~� h�)dl,,.

4.3. The �complete� integral of the DWHJ equation

We next come to the important concept of a �complete� HJ integral for fields. Let me recall the
corresponding integral in mechanics: If S(t, q; a) is a solution of the HJ equation which depends on n
parameters a,, j = 1 n, such that( B~S = (t, q; a)~  0, (4,43)

Bq�Bak Ba, /

then we can solve the equations

BS/Bak=bk=const., k=1 n,

for the coordinates q�: q~(t)= f�(t; a, b). The curves q(t) = f(t; a, b) are extremals. This follows from eq.
(4,25), where G = b� = const. now and which implies

(4��BH/Bp,)B~i1IBa,=0, k= 1 n. (4,44)

In view of the inequality (4,43) the coefficients 4� � BH/Bp, of the homogeneous system (4,44) have to

vanish, which means that the functions q�(t) = f�(t; a, b) are solutions of the canonical equations

4� =~(t,q,p~= B~S(t,q)).

It follows from our discussion in chapter 2 that they are solutions of ji, = �B,H, too! A solution S(t, q; a)
of the HJ equation with the property (4,43) is called a �complete integral�. It provides a set of solutions
q�(t) = f�(t; a, b) of the equations of motion which depends on the largest possible number (2n) of
constants of integration, i.e. the set is �complete�.

The definition of a �complete� integral S� (x, z) of HJ equations in field theories is a straightforward
generalization of that in mechanics [Fréchet, 1905; DeDonder, 1935; Dedecker, 1953], however, it will
in general not provide a �complete� set of solutions of the field equations.

Suppose, we have a solution S�(x, z) of eq. (4,3b) which depends on 2n parameters a~,~� = 1, 2,
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b = 1, - . . , n, such that

( B2S� �~-~-~  0 445
\,Bz�Ba~ Bat) � )

and for which the eqs. (4,6) are fulfilled. Then each of the 2n parameters a�~will generate a current:

G~;b : = ~-~� (x, z; a). (4,46)Ba,,

Suppose now, we have 4n functions g�~�(x),which are arbitrary, up to the following properties: They
should obey the equations

(4,47)

identically for all x, b and ii and the equations

G~(x,z; a) = ~ (x, z; a) = g~~~(x) (4,48)
Ba b

should be a solvable system of 4n equations for the n variables z�! Thus 3n of the eqs. (4,48) cannot be
independent of the other n ones. Consider the following example: If the vector y E R� should be a
solution of the two inhomogeneous linear systems Ay = a, By = b, where A and B are nonsingular
(n X n)-matrices, we must have BA�a = b.

Functions g~(x)with the property (4,47) are not difficult to find: Let h~(x)be 2n arbitrary smooth
functions. If we define

g~L;b(x)=c~~ABAh~(x), (449)

then the eqs. (4.47) are fulfilled identically.
Thus, the problem is, to find appropriate solutions S�(x, z; a) and functions g~�(x)such that the 4n

eqs. (4,48) do have n solutions z� = fa(x) If such solutions Za = f�(x) can be found, they are extremals;

for it follows from eqs. (4,33), (4,48) and (4,47) that

~ L�=1,2; c=1,...,n.

Combined with the inequality (4,45) we conclude

3,,z�(x)� BH/Bir�t = 0

and it follows from the construction that the integrability condition (4,6) and the eqs. (4,18) are fulfilled.
It is clear that we will only find functions g~�(x)with the properties required if the solutions S�~(x, z)
do obey the integrability conditions (4,6), at least locally!
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Example:
The following is a rather simple example of a complete integral which allows for the construction of a
solution of the field equation [von Rieth, 1982]:
If V(z) = ~m2z2, then the HJ eq. (4,7) implies for the ansatz S�(x, Z) = ~h�(x)z2 the Riccati-type
equation

B,,h� + h,,h� + m2 = 0,

which has the solution

h0=_~m tan(~mx0+a0), h�=�~mtanh(~3~mx�+a�),

with the in general nonsingular determinant

( BS� ~ ~ -

\Ba�Bz/ / ~ \V2 / \V2

The quantities G~= BS�/Ba� here have the form

G~(x,z) = � mz2/ ~2V2 cos2(~mx°+ ao)}, =0,

G~= 0, G~(x,z)= _mZ2/~2V2cosh2(~mx� + a�)}.

Taking for g~(x)the functions

g~~A2m3c05h2(~mx1+~1), A=const., g~=0,

g~=0, g~=_~A2m3cos2(~mx0+a0),

we have B,,g~= 0, as required. The equations G~(x,Z) = g~(x)have the solution

Z(x)=± Amcos(~mx0+a0)cosh(~mx1+a1),

which satisfies the KG equation.

4.4. A construction of wave fronts for a family of extremals depending on n parameters

Up to now we have been mainly concerned with the problem, whether a given solution S� (x, z) of
the DWHJ eq. (4,3b) can be �generated� by extremals, i.e. whether the integrability conditions (4,6) are
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fulfilled. In most cases they are not. On the other hand, we saw in mechanics that a family of solutions
q�(t) = f�(t; u), p,(t) = g,(t; u), depending on n parameters u� such that the Lagrange brackets [u�,U”]
vanish and for which (Bq�/Bu�)I  0, generate the associated HJ function S(t, q). Similarly one can ask,
which wave fronts � if any � can be generated by a given family of extremals Z� = f~(x; u) which depend
on n parameters u�, b = 1,. . - , n, such that

(BZ�/Bu�)l  0. (4,50)

This inequality allows one to solve the equations Za =f�(x; u) for U:

ua=X~~(x,z). (4,51)

If we insert the functions (4,51) into B,,f�(x; u):

B,,Z�(x)= B,,f�[x; u = ~(x, z)] = ~(x, Z),

then the slope functions ç~(x,Z) fulfill the integrability condition (4,6) by construction. The question
arises whether these slope functions ~. can be generated by wave fronts, namely, whether there is a
closed 2-form 12 of the differentials dx, dZ�, the coefficients of which are completely determined by the
solutions Z� = f~(x). It is indeed possible to construct such a form 12 [Debever, 1937; see also Hilbert,
1906], however, it will in general not be of the DeDonder�Weyl type. We start with the general
expression

fl=Ldx1Adx2+rr~dZ�Adl,,+~h~,,w�Ato�.

Since dZ� = B,,f�(x) dx� + (t9f�IBu�) dub, we have to� = (Bfa/Bub) du�, and therefore

hi =A(x, u)dx� Adx2+l~du� AdI,, ~ du� AdU”, (4,52)

where

A(x, u)= L[x,f(x; u), B,,f(x; u)], (4,53a)

g~(x;u)=ir~, (4,53b)

K~b(x,u) ~ (4,53c)

The postulate dli = 0 implies the equations

(4,54)

(4,55)
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K~c+Ka~+/~Kca0. (4,56)

Because

�=B~L-~--+-~----~--a b
Bu� Bua Bv~Bu� ~ ~

Bl�=B �~+ �B~ a ~ Bu�~ ~

the eqs. (4,54) are a consequence of the Euler�Lagrange equations

B,,g~�B,,L=0.

Furthermore, with

� ±. i,, � � �. a b ~ 4 -

Bub Bua b � Bu” Bub Bub Bu� �. [u ,u ] , ( ,~ )

we can rewrite eqs. (4,55) as

~~E~PBPKab=[Ua,Ub]~, /2=1,2. (4,58)

The quantities [U”,uL~]~represent generalizations of the Lagrange brackets (2,17) to field theories. The
�field� eqs. (4,54) imply the �continuity� equation

B,,[u�, u�]� = 0, (4,59)

which is an obvious generalization of eq. (2,18).
If the Lagrange brackets [u�,u�]� vanish, it follows from eqs. (4,58) that we may take Kaj, = 0, or

ha,, = 0. In this case the extremals Z� = fa(x; u) can be embedded in a DeDonder�Weyl geodesic field
S� (x, z). However, the Lagrange brackets (4,57) will not vanish in general. In that case the eqs. (4,58)
and (4,59) imply that the quantities Ks,, can be calculated by the path-independent line integral

Kab(x, u) = 2 J [U�,u�]� dl,,. (4,60)

The functions (4,60) fulfill the eqs. (4,56) identically.
Having calculated the functions Kab(x, u), we can determine the coefficients hab = h~,,(x,u) from the

linear eqs. (4,53c). Using the functions (4,51) we can calculate h~,,(x,x(x, z)) =: h~,,(x,z) and therefore

Ill = �H dx� Adx2+ ~ dza AdI,, +
2ha~dz� AdZb,

~ (4,61)

h�~b= E�h~b, L(x, z)= A(x, u = ~(x, z)), ~ Z)= g~(x;u = x(x, z)).
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Next one has to determine the rank r of the form (4,61) and then find r functions S~(x,Z) such that
11 = dS� A dS2 + .--, where some of the functions S�(x, .z) may be the coordinates x� themselves. :

The procedure just described, which allows to calculate wave fronts associated with a given

n-parametric family of extremals can be generalized as follows [Lepage, 1941]: :
Suppose we are given slope functions ~(x, z) which obey the integrability conditions (4,6) and for

which the Euler�Lagrange equations

d BL
Z, v)= B~L(x,Z, v)

are fulfilled, if we replace the v~.by the functions (x, z). Inserting the forms to� = dZ� � ~ dx� and
v~=ço~(x,z)into

[l=Ldx1 Adx2+ ir~to� Adl,,+~habW� AWb

gives a form fi the coefficients of which depend only on the variables x and Z�. The postulate dl? = 0

implies partial differential equations for the functions he,, = h~b(x,z) which can be solved, in principle.
Thus, any arbitrary completely integrable set of slope functions ~ ~, which define the system

B,,Z�(x) = ~(x, Z)

of first-order differential equations, the solutions Z� = fa(x) of which are extremals, i.e. for which the
functions f� (x) are solutions of the Euler�Lagrange equations, too, can be generated by wave fronts.

4.5. The reduction of the field equations to ordinary canonical equations within the DWHJframework

In our discussion above we have learnt about two essentially new possibilities for finding solutions of
the field equations by means of solving the DWHJ eq. (4,3b): We can look for solutions 5� (x, .z) which
fulfill the integrability conditions (4,6) and then we can either solve the first-order differential eqs. (4,5),

or, if the solution S� (x, 4 is a complete integral, we can try to solve the algebraic eqs. (4,48).
We shall now discuss a third method for solving the field equations which uses the HJ framework in

order to transform the canonical partial differential equations for fields into ordinary differential
equations which have the same form as the canonical equations in mechanics. The idea goes back to E.
HOlder [1939]who used it first in the context of Carathéodory�s HJ theory for fields. It was rephrased
and generalized in terms of differential forms by Lepage, who applied it to the DeDonder�Weyl theory,
too [1942,§21, 22]. Later Lepage�s ideas were discussed�in more conventional language�by Van Hove
[1945a]and by KlOtzler [1970,§24, 25]. A modernized version was given by Goldschmidt and Sternberg
[1973].The following version is essentially that of Lepage.

The crucial starting point is again that the DWHJ eq. (4,3b) is one partial differential equation for
two functions 5� (x, 4, so that we can choose one of them, e.g. S2(x, 4, rather freely, pfovided the
relation

ir~(x)= B~S2(x,z = f(x)) (4,62)

is fulfilled on the extremals z� = f�~(x)under consideration. Let us suppose that we have somehow
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managed to find such a function S2 � how this may be done will be briefly discussed below �. Consider
next the canonical DeDonder�Weyl 2-form

dS�Adx2+dx�AdS2=~Hdx�Adx2+ir~dz�Adx2+ir~dx�AdZ�. (4,63)

Since dS2 = B,,S2 dx� + BaS2 dZ�, BaS2 = ir~,the form (4,63) can be reduced to

dS� A dx2 = (�Ii dx� + ~ dz�) A dx2 =: h~ (464)

121 = H[x, Z, ir~,ir~.= B~S2(x,z)] + B(
2)S

2(x, z), B(
2) : B/Bx.

We see that the 2-form (4,64) defines a 1-dimensional canonical system modulo dx
2 in terms of the

effective canonical 1-form 0 = �H dx� + ir�~dz�. The 2-form dO = �dH A dx� + dir~A dza will contain
terms involving dx2, since H and ir~depend on x2. However all these terms drop out of dii,, because of
the overall factor dx2 in 11,, itself, Thus we have transformed the original 2-dimensional canonical
system into a 1-dimensional one in the hyperplane x2 = const., with the effective canonical form

ö121(t,Z,p)dt+PadZ�, t=x�, ~ (4,65)

which implies the canonical equations

dp~/dt= ~BaH, dz�/dt = BH/Bpa. (4,66)

That the planes x2 = const. occur in this context is a consequence of the fact that these planes are
�characteristic� planes of the form 12,,�see the discussion at the beginning of this chapter�.

The validity of the canonical eqs. (4,66) can be proven by direct calculation, too: Differentiating H
with respect to Z~Lgives

BaH = BaH + BbBaS2 + B(
2)B~S

2(x,z) = BaH + BaS2 BaIT! + = �

because dir~/dx�+ B~H= 0. Furthermore, we have BI21/Bir~= BH/Bir~,.The above considerations may
be rephrased in the following way: Assume that we have found a function S2(x, z) with the property
(4,62). Then the DWHJ eq. (4,3b) becomes a partial differential equation of first order for the function
S�(x, 4:

B(I)s + ~(x, z, = a~S�) = 0. (4,67)

The characteristic ordinary equations (with independent variable t) associated with this partial differen-
tial equation [Carathéodory, 1935, §43] are

= ~, = 0; i� := dx�/dt, (4,68a)

2� = ~ ~, i~ = 3añ~= B~H� BaBbS2 BaB(
2)5

2. (4,68b)
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From ±�= 1 we get x� = t and the equation ±2 = 0, which is a consequence of the fact that H does not
contain B(2)S�, means that the variable x

2 has to be kept constant. The eqs. (4,68b) are the same as the
eqs. (4,66).

The question arises, how we can recover the x2-dependence of the fields Z� = f�(x), ir~= g~(x),
after we have found solutions f(t) = f�(t; u), p,,(t) = ir~(t)= g~(t;u), where the parameters u�,
j = 1, 2, -.., are constants of integration. The x2-dependence of the fields f�(x), g~(x)can be present in
the functions f�(t; u) and g~(t;u) in 2 ways, �openly� and �hidden�: In general the choice of the
function S2(x, 4 will be such that IT~ = BaS2(x, 4 and B(

2)S
2(x, 4 will depend on x2, and therefore x2

will appear explicitly in H as a parameter which is to be treated as a constant when we solve the
effective 1-dimensional problem with respect to the independent variable x�. In order to keep the
following formulae simple, we shall consider x2 to be one of the parameters u�. In addition the
x2-dependence may be hidden in the constants of integration u�  x2! This x2-dependence can be
determined by the following �variation of the constants� u�: Knowing ir~= ~(t; u), ii~=

B~S2(x,f(t,u)) we can calculate the slope functions

Z = f(t, u)) = ~ u)

and f�(t; u) has to obey the differential equation

B(
2)f�(t, u) = B(2)u� = ~(x, u). (4,69)

In addition we must have

dir~ d 2
= ~ [BUS (x, f(t, u))]

= d(2)8a5

2(x, J~+ (3~BbS2) B~u� (4,70)

= � t9aH[x, Z = f, ir~= ~, i = B~S2(x,J)] � B(,)g~(t,u).

Let me illustrate these considerations by a simple example:
From eq. (4,15) we get

= �LA, ir� = I9ZS1 = kW�(z)= -~-(A� 2V(z))�2

and therefore for 12!:

p=ir°.

In this case ir� and B(,)S� and therefore .a too, do not depend explicitly on x� or x°.To be even more
specific let me take V(Z) = ~/22Z2. Then we get � in the plane x2 = const. � the equations of motion

dZldt= afva~=~, ~
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with the solution Z = f(t; u)= u� sin(tot+ u2). Since from the beginning�see eq. (4,14)�

H = 1(~°)2� 1(~�)2+ V(z) =

we have (u�)2 = AI,a2. Thus there is no �hidden� x2-dependence of u�. For the function ~,(x, u) we
obtain

= � -~-(A� /22z2)�2 = � ~- \/Acos(tot+ u2).

The eqs. (4,69) here take the form

B,j(t;/2)=~cos(wt+u2)B,u2=_~VAcos(tot+u2),

and have the solution u2 = � kx� + const.

4.6. Embedding a given extremal into a system of wave fronts

The procedure just discussed can be used in order to embed any given extremal Z� = f~ (x) weakly

and locally in a geodesic field 5� (x, z) of the DeDonder�Weyl type, such that the relations

ir~(x)= B~S�(x,z = f(x))

hold in the points (x, f(x)) of the extremal l~, but it is not required that the integrability conditions (4,6)
hold in a neighborhood of l,,2.

We have seen above that we can reduce the problem to a 1-dimensional one, provided we can find
functions S2(x, z) which fulfill the conditions (4,62) on l~. For a given extremal Z� = f~(x) the condition
(4,62) can be realized in different ways:

(i) Suppose the extremal Z� = f~(x)is a member of an n-parametric family of extremals Z� = f�(x, u)
with f~(x)= fa(x; u = u,,), such that (Bz�/Bu�~~ 0, then we can solve the equations Z� = fa(x; u) for
U� = xa(x, 4 and insert these functions into B,,z�(x, u = ~(x, z)) = ~(x, z). If, in addition, the
Lagrange brackets [u�,U�]� vanish, we can determine the functions S�(x, z) as discussed in section 4.4
above. If the Lagrange brackets do not vanish, we can calculate ir~= ~ z) from the slope functions
q~.and solve the partial differential equations B~S2(x,z) = ~i~(x,z) for S2(x, z), in order to calculate the
term B(

2)S
2 in the effective Hamiltonian H. The procedure just described might be useful if the system is

invariant under a transformation group depending on at least n parameters. in that case we can
generate an n-parametric family of solutions by applying a general group element tof~(x).If the group is
compact or contains compact subgroups the functions u� = f(x, z) will only exist locally!

(ii) Another method [Van Hove, 1945a], which is always applicable, uses a linear ansatz for S2(x, z)
in a neighborhood of a point (x, f(x)):

S2(x,z)=(z�-f�(x))ir~(x). (4,71)

This ansatz leads to
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B(2)S
2(x, z) = B(

2)ir~(x)(Z�~� f� (x)) � B(2)f�(x)~ir~(x).

Because

121 = H(x, z, p; i~
2)+B(

2)S
2(x, z),

the eqs. (4,66) become

2� = BHIBir~, I~a= BaH B(
2)ir~(x). (4,72)

We see that the additional term B(2)iT~(x)represents an explicitly time-dependent �force� in the
reduced problem.

Instead of pursuing the general case, let me discuss a simple example in order to illustrate the
relevant points:
For L = ~(v0)� ~(v,)

2 � V(z), we have p°= v
0, p

1 = � v,, H = ~(p°)2� ~(p�)2+ V(z) and the DWHJ
equation is

B,,S� +~(B~S°)2�~(a~S�)2+V(z)= 0.

Let z = f(x) be an extremal, i.e. a solution of the equation

B~f�B~f+ V�(f) = 0. (4,73)

The ansatz

S�(x, z) = �a,f(x) (Z � f(x))

gives

B,S1(x, 4 = �B~f(x)(z �f(x))+ (B,f(x))2,

and therefore

= ~p2+ ~[B,f(x)]2+ V(z) � B~f(x)(Z � f(x)). (4,74)

The characteristic eqs. (4,72) take the form

± =p, j5=�V�(z)+a~f(x), (4,75)

or

2� = � V�(z) + 3~f(t,x2 = const.). (4,76)

In general it will be difficult to solve the inhomogeneous eq. (4,76) explicitly. In the special case of
V = ~/22Z2 (Klein�Gordon equation) eq. (4,76) is that of a driven harmonic oscillator and can be solved
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analytically. But, already for the Sine�Gordon equation with V(Z) = a(l � cos /34 eq. (4,76) becomes
that of a driven pendulum and in general will be hard to solve analytically.

However, as long as we are interested in wave fronts which �embed� a given extremal only locally,
i.e. only in a small neighborhood of the surface z = f(x), we can use the following quadratic
approximation of H(x, Z, p) in the variable e(x, z) := z

121(2) = ~p2+ ~(B,f)2+ VU) + V�(f) s + ~V�(f) E2 � B~fe

which, because of the field eq. (4,73), reduces to

j.~�(2)= ~2 + ~(B,f)2+ VU) + ~V�(f) s2 � B~fr. (4,77)

The characteristic eqs. (4,66) take the form

2� = B

0f+ é = BI-P
2~/Bp= p, ji = �BH~2~/Bz= B~f� V�(f) r, (4,78)

or

~+ V�(f)r 0. (4,79)

We now can construct a solution of the HJ equation

a
0S°+ ITf(2) = 0, p = B~S°, (4,80)

without even solving eqs. (4,79) explicitly. The crucial point is that this differential equation is a
homogeneous one: Let g(t) be a solution with the initial condition g(0) = 1, g(0) = 0. If r,, is a
parameter  0, then ~(t)= eog(t) is a solution of eq. (4,79) with s(0)= ro, é(0)=0 and we have
~(t) = = e(t),~Ig.Direct integration of the differential equation

BH~
2~

& = p(t) �~j�----[x, Z(t), p(t)] � H12~[x, z(t), p(t)]

= ~(B,f+ ~)2_ ~(B,f)2- V(f)+ B~fr(t)-~V�(f) r2(t)

yields the solution

u(x°;x1, e) = const. + aofr � (B,fE)~oo+ ~ + J dt [~(a,f)2� ~(a,f)2� V(f(t, x�))], (4,81)

where partial integration, eq. (4,79) and é(0) = 0 has been used. Choosing the constant in eq. (4,81) to be
equal to (B,fr)~o.

0and recalling that ~ = s~/gwe obtain the solution

S°(x,4 = u(x°;x�, c = z � f(x))

= B0f(x) (z - f(x)) + ~(BogIg)(z- f(x))
2 + J dtL[f(t, x�), B,,f(t, x�)] (4,82)

of eq. (4,80). Notice that B~S°~.
0= Bof(x), as it should.
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As to the integrability condition (4,9) we have

�B~S°B~S�+B,B~S°= Bi3of+ (.z �f(x)) B,(B,,g/g),

—a~S’B~S°�BOBZS~= a,B,,f,

i.e. the conditions (4,9) are fulfilled if either Z = f(x), i.e. on the extremal, or if B,(B
0g/g) = 0, i.e. if

V�(f(x°,x
1)) does not depend on x’, which is the case for V(.z) = ~t2Z2.

Suppose now the extremal z = f(x) depends on a parameter a. Then the components G°,G’ of the
associated DWHJ current are

xl

G°(x)= ~ = �B
0f-~--f+-~-J dtL[f(t, x�; a), a,,f(t, x�; a)],

Ba ~=o Ba Ba o (4,83)

G1(x)=~/_~ = B,f-/--f.

Using the field eq. (4,73) one verifies immediately that B,,G°+ B,G� = 0.
Remarks:

(i) The generalization of the current (4,83) to arbitrary dimensions m and any number of fields is
[von Rieth, 1982]:

G0=_ir~~fb+~ J dtL[f(t,x; a), 8,,f(t,x; a)],
(4,84)

ç�~a. ,2±.,b _�1 i. ~(1 rn�i
� iTb8J , /2�i,...,m 1, x�~x,...,x

for which the continuity equation B,ZG� = 0 is again a consequence of the Euler�Lagrange equations.
(ii) If, for instance, a is the parameter r of time translations x°�~x°+ r, x �~x, then, if L does not

depend explicitly on x°,this parameter appears in the form fb(xo + r, x) and the current (4,84) becomes

G� = ~L� irg B,,f” =

which is the usual energy current! More generally, the expression (4,84) for a conserved current
contains the Noether current as a special case, for which the parameter a becomes a group parameter of
a symmetry transformation. There is, however, an important difference between the currents associated
with a group parameter and those HJ currents not associated with a general symmetry transformation:
In the case of symmetry transformations the quantities Bf b1 Ba, BB,,f�f Ba are again expressible in terms of
the quantities f� and 3,,!�. This will in general not be possible for arbitrary parameters.

(iii) In the current (4,84) the zero component seems to play a special role. This is not so: We get a
conserved current, if an arbitrary component G” has the form

G� = J di�L[f(x°,. . . , iv,. . - ,xmi), B,,f(x°,..- , i~, - . - ,xm~)] � ~



76 H.A. Kastrup, Canonical theories ofLagrangian dynamical systems in physics

and the rest is given by

G�=�~-~-f�, /2 tI.
Ba

Another interesting solution, due to Rinke [1981], of the DWHJ equation in the case of the
relativistic string [Nambu, 1970; Rebbi, 1974; Scherk, 1975] is the following: For this system the
dependent variables z� are the coordinates x�, a = 0, 1, 2, 3, of the Minkowski space M4 (with metric
x - x = g~,,x�x�= (x°)2� (x�)2 � (x2)2 � (x3)2) which depend on the parameters t�, p. = 1, 2. The Lagran-
gian is

L = [� ~v~~v��]�2= [(v
1- v2)

2 � (v,- v
1)(v2- v2)]�

2, v�3 = v~v~�3� v~v
2�, (4,85)

from which one obtains the canonical momenta

�3

= ~ [v2(v1- v2)� v�~(v2-v2)]

(4,86)

ir~.= ~ [v~(v~ . v2)— v~(v,- v,)]

with the properties

v,. - iT� = 6~L (4,87)

and

:= ir~,ir~� = �g~7g,,,v~�. (4,88)

For the Hamilton function H = rr~v�,,� L we obtain, with the help of eqs. (4,87) and (4,88)

H(ir) = L = (_~~~as)1I2. (4,89)

If x� = f�(t), t = (t�, t
2) is a solution of the Euler�Lagrange equations B~)iT~= 0, B~) := B/at� then

S�(t, x) = iT~(t)(x� - ~f�(t)) (4,90)

is a solution of the DWHJ equation

B(,,)S� + H(iT) = 0, ~ = BPS�, B~:= B/Bx�. (4,91)

The assertion follows immediately from the relations (4,87) and the field equations B(,,)1r~= 0 which
imply B(,,)S� =�L=�H!

If f�(t; a) is a solution of the field equations depending on a parameter a then the solutions (4,90)
give the following components of a conserved DWHJ current
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G�(t) = x�=~(t) 2 &- ir~)f�-~ ir~~. (4,92)

I finally mention an interesting relation between solutions S�(x, z) of the HJ eq. (4,7) and the
integrability condition (4,9) and the solutions Z = f(x) of the field equation (B~� B~)Z(x)+ V�(Z) = 0

[Nüsser, 1982]: Differentiating the HJ eq. (4,7) with respect to z and combining the result

~ +~B~[(~!i°)~—.(~,1)2] = �V�(z), i/i� :=

with the integrability condition (4,9), by adding and subtracting, gives the equations

(B~+ B,)(~°+ ui�) + (~,°� çb�) a~(~°+ ~�) = - V�(z), (4,93a)

(B,, � B,)(~t°� ~/�)+ (~,°+ vi�) B~(~/,°� i/i�) = � V�(z). (4,93b)

If we have solutions ~fr�(x,4 of the eqs. (4,93), then we get solutions S�(x, 4 of the HJ eq. (4,7) by
integration:

S�(x,z)=J d2~�(x,2)+s�(x), (4,94)

where the functions s�(x) are independent of Z and which, according to the HJ eq. (4,7), have to obey
the equation

B,,s� (x) = ~ � V(Z) � J d2 B,,~�. (4,95)

As the l.h. side of the last equation is independent of z, we have

= � V�(z)�

and therefore eq. (4,95) takes the form

3,,s� (x) = � V(zo) � ~�~1� (x, z,,), (4,96)

from which s� (x) is to be determined, once the functions vs� are known.
Introducing light cone variables x+ = ~(x°+ x�), x = ~(x°� x�) and the functions a(x, Z) = ~fr

0 + i/i�,

b(x, z) = � vi�, the eqs. (4,93) may be rewritten as

B+a + b B~a= � V�(z) (4,97a)

&b + a B~b= � V�(z). (4,97b)
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The eqs. (4,97) have a very special structure: The first equation contains only derivatives with respect to
x÷and z, whereas the second one contains only derivatives with respect to x_ and z. Suppose we would
know the function b(x, z), then eq. (4,97a) yields the characteristic equations

B5x+ = 1, B~x_=0, B~z= b, B~a= �V�(z) (4,98)

for the 1-dimensional characteristic curves x+(s). x~(s)and z(x), s E R. Correspondingly eq. (4,9Th)

implies the characteristic equations with respect to a second curve variable t:

= 0, B~x = 1 , B~z = a, B~b= � V�(z). (4,99)

The first two of the eqs. (4,98) and (4,99) show that we may take s = x~and t = x. Then the rest of the
equations implies the compatibility condition

B± B~z(x)+V�(z)= 0,

which is just the Euler�Lagrange equation!
If z =f(x; u) isa solution of this fIeld equation depending on a parameter u, such that z =f(x; u)

can be solved for u, i.e. U = ~(x, z), then

a(x, z) = Bj~x;u = x(x. z)], b(x, z) = B÷ f[x;u = x(x, z)]

are solutions of eqs. (4,97) and the functions S�(x, z) may be constructed as indicated above.
One may ask: what is the use of embedding a given extremal in a system of wave fronts? There

are � at least � two physical reasons: First, we have seen that any family of wave fronts S� (x, z), which
depends on a parameter, generates a conserved current �along� the associated extremals. Thus,
embedding a given extremal may lead to interesting continuity equations associated with that special
extremal, or a set of extremals. Second, HJ wave fronts, transversal to a family of extremals in
mechanics, can provide useful semiclassical approximations for quantum mechanical problems [Berry
and Mount, 1972; Voros, 1976; DeWitt-Morette. Maheshwari and Nelson, 1979]. Hi wave fronts
associated with classical solutions of field equations may be equally useful for semiclassical ap-
proximations in quantum field theory.

4.7. Bibliographical notes

The early history of the HJ theory for fields has already been sketched in the Introduction.
Independent of DeDonder�s paper [1913] Prange�s dissertation appeared in 1915, in which he attempted
to combine ideas around Hubert�s independent integral with those of Volterra and Fréchet. In 1933
Born tried to apply Prange�s investigation to the quantization of the electromagnetic field, without much
success. Born�s paper, however, stimulated Weyl to discuss the ansatz of DeDonder thoroughly [1934
and 1935]. In 1930 DeDonder himself had worked out his version of a Hi theory for fields. A second
edition of this monograph appeared in 1935. For further references see the notes at the end of chapter
3. especially Lepage, Boerner, Dedecker, Sternberg and Goldschmidt. The most extensive recent
treatment of the DWHJ theory can be found in the textbook by Klötzler [1970].It is discussed in the
textbooks by Funk [1970.ch. VI] and Rund [1973],too.
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5. Carathéodory�s canonical theory for fields

Probably the most interesting canonical theory for fields is that of Carathéodory. It has a rich
geometrical structure and it is the only canonical theory for fields which has n-dimensional transversal
wave fronts if the system has n dependent variables, in complete analogy to the situation in mechanics!
However, one has to pay a prize for this structural richness: The canonical equations of motion and the
CHJ equation are rather complicated which makes it difficult to handle them analytically. On the other
hand, Carathéodory�s canonical equations have the remarkable property that they can be cast into
�mechanical� form by a canonical point transformation. This allows for an interesting reformulation of
the problem to find solutions of the Euler�Lagrange equations! A very intriguing feature of Cara-
théodory�s theory consists in its property to provide a number of new handles for the qualitative
analysis of a system under consideration (singularities of families of solutions, bifurcations, singularities
in transversality relations, caustics etc.). Some of these aspects will be discussed in chapter 8.

In any case, it is the main purpose of this review to draw Carathéodory�s canonical theory to light, in
the hope that a joint effort of the theoretical physics community will make it fruitful for physics at large!

5.1. The generalized Legendre transform

The basic defining relation for the canonical quantities in Carathéodory�s theory is�see eq. (3,60)�:

ul~= a� A a2 = 0~A 02, (5,1)

where

a� = L dx� + ir~to�= �T~dx� + ir~dz�, T~= ir~v~� 6~L, (5,2)

and

0� = �H~dx� + p~dz� = �S~ dx� + p~toa, S~= p~v�~� 6~H~. (5,3)

On the extremals (T~)is the canonical energy-momentum tensor!
Expanding the l.h. side of eq. (5,1) in terms of dx� and dz� and comparing coefficients on both sides

gives

1
H~=�L~T~, TI := det(T~), (5,4)

and

p~= �~j(ir~T~�ir~T~), p2a = ~j(ir~T~ IT�~TO.

Here it is convenient to use the notion of the algebraic complement (or cofactor) T~of the matrix
element T~[see e.g. Satake, 1975, ch. II, §3], which in our special case form the matrix
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/ p2 p1

T � �T�~� ( ~ 2 1 2
�� \~�T~ T

1

1

and which � like n x n matrices in general � obey the equations

T~T~=~ITI=Tp�T°c. (55)

They imply

TI I~I=TIm, (5,6)

if (T~)is an m x m matrix. With the help of the matrix (T~)we can rewrite the above expressions for the
momenta p�a:

P�a = ~ T~1T~, (5,7)

or, because of the relations (5,4) and (5,5)

H~ir~= T,,�p~. (5,8)

The last equation implies H~a� = T,,� 0�.
In the following it will be convenient to use the matrices

v = (v~): n rows, 2 columns,

IT = (ir~),p = (p~): 2 rows, n columns,

which allow us to write

T=rrv�LE2, p=�~T7r~ (5,9)

TT= T=ITIE2.

(Notice that our definition of T includes the interchange of the indices: (T~)= (T~), which is
convenient, if one employs the summation convention for coinciding upper and lower indices.) Finally,
comparing the factors of dza A dz� in eq. (5,1) we obtain

hab ~j(1T~i1T~ ir~ir~)

= —~(p1~p~ —p~p~)=: i~. (5,10)

If we use the basis vectors dx� and to� for expressing the forms a� and 0� �see eqs. (5,2) and (5,3)�,
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we get from eq. (5,1) the relations

H~ir=�Sp, (5,11)

and we have

S pv � H~E2= � Tirv � H~E2

=�~)�(T+LE2)�H~E2=�~, (5,12)

where the relations (5,7), (5,9) and (5,4) have been used. We further notice that

Lp=Sir. (5,13)

The expression (5,4) for the Hamilton-function is intuitively extremely appealing: H~is essentially the
determinant of the canonical energy-momentum tensor T = irv � LE2. It is very plausible physically
that this quantity governs the dynamics of the system locally! Furthermore, since

TI = L
2�tr(t~)L+det(t~), t~:= ~ (5,14)

we see that TI can be looked at as the characteristic polynomial of the matrix (t~)=(1r~v�~),with the
Lagrangian L as the usual polynomial variable A, which here, however, is a function of v~etc., too. If
we compare eq. (5,14) with the DeDonder�Weyl Hamilton-function

HDW=K=v~�L=tr(t~)�L, (5,15)

we see that the function K contains only one invariant of the matrix (ti), namely tr(t~),whereas
H~= �ITI/L contains both, tr(t~)and det(t~).(In the case of m independent variables H~depends on
the m invariants of the matrix (t~= i~ v~)).Thus, Carathéodory�s canonical theory makes full use of all
the invariants of the matrix (1r~v~)!

It is very important that the DW theory can be looked at as the zero order approximation [Weyl,
1935], if one expands Carathéodory�s canonical quantities in powers of (ilL):

~

p~=~ etc.

In the language of physicists this means that the standard canonical theory is the �strong coupling�
limit(!) of Carathéodory�s theory: Suppose the Lagrangian L has the form L= Lo(v)� V(z), where the
interaction term V(z) does not depend on v, so that ir~= ôLo/9v~.Then the matrix (~-~v�~)does not
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depend on V(z) explicitly. So, if V( ~ L0(, then H. HDW and p~ ii~. This property remains valid
for arbitrary dimensions m. Thus the conventional canonical theory appears to be an approximation of
a more sophisticated one!

It is remarkable that the Hamilton function H~can be expressed by the determinant R( of the matrix

R=(R~=v~ir~�6~L)=vir�LE~, (5,16)

too.
Proof: It follows from the relations (2,40) that

(~-LE2)~

= (-L)
2 - H = (-L)2~IRI, (5,17)

and therefore we have from eq. (5,4):

H~=(�L)~RI. (5,18)

Eq. (5,17) shows that the characteristic polynomial of the matrix (ir~v~)is proportional to that of the
matrix (v~ir~)!Notice that R is a matrix with respect to the field (�internal�) indices a, whereas T is a
matrix with respect to the �space-time� indices ~. From eqs. (5,8) and (5,13) we obtain

~ (5,19)

In analogy to the matrix S we define the matrix

(5,20)

which has the property

RQ=LHCE~, (5,21)

because

(v 7r�LE~)(v~p-H~E~)=v(7n v)p-Lvp�H~v~ir+LH~E~

~

It follows from eqs. (5,21) and (5,18) that

= (-1)�~LH~�, (5,22)

and from eqs. (5,21) and (5,20) that

Lp=~Q. (5,23)
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If n = 1, then R = � L, and we see from eq. (5,18) that H~= ~r�v,..� L = K = HDW, and from eq.
(5,23) that p~�= ~, i.e. for n = 1 the canonical theories of DeDonder�Weyl and Carathéodory coincide!
This is a consequence of the fact, mentioned already in chapter 3, that a 2-form in 3 variables � here x1,
x2 and z � has rank 2.

In order to establish the relations between the quantities ~ i9aHc, aH~/ap~and o~L,aaL, v~,
induced by the Legendre transformation v�*p, L�*H~,we could use the relations (3,14). It is, however,
more instructive, to derive them directly: In order to do so, we recall the relation [see, e.g., Satake,
1975, pp. 98�99]

dlAI=A~dA~ (5,24)

for the differential of the determinant Al of a matrix A = (At), where A~is the cofactor of A~.
Applying the formula (5,24) to H~L= �~SI,eq. (5,11), gives

H~dL+LdH~=�S~dS~= T~dS~.

Because

~ T~p~=H~ir~,

we obtain the basic relation

~ K= ir�~v~�L, (5,25)

which implies

K 8~H~= �Ff~a~L, (5,26a)

K i9aHc = H~t9aL, (5,26b)

(5,26c)

In matrix notation the last equation reads: w = v TIK = R v/K. Eq. (5,26c) expresses the quantity
v~T~fK as a function w~(x,z, p) of x, z and p. For n = 1 we have v~T~/K= v~= w~(x,z, p).
Combining eq. (5,26c) with eqs. (5,8) and (5,19) gives

ri-v/K=p~w/H~, w=(w~), (5,27a)

v niK= wp/H~. (5,27b)

Suppose we can solve the equations w~= aHj8p~(x,z,p) for p~= p~(x,z, w). We then can define the

�normal� Legendre transform

G(x, z, w) = w~p~� H~, (5,28)
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for which we get from the relations (5,27)

GIH~�L/K. (5,29)

For n = 1, we have G = L. The Legendre transformation p�~w, H-i. G defined by eq. (5,28) implies

= ~ i9aG = �aaHc, aG/aw~= p~. (5,30)

With the help of the eqs. (5,27) we can express the matrices T and R in terms of x, z, p and w(x, z, p):

T/K=V/H~, V=pw�GE2, (5,31a)

R/K=W/H~, W=w~p�GE~. (5,31b)

Eqs. (5,29) and (5,31) can be used in order to express L and K as functions of x, z and p: From eqs.
(5,31) we obtain

T1K
2= VlH~2, IRIK� = IwlH~, (5,32)

which, combined with the eqs. (5,4), (5,18) and (5,29), give

L = �H~G2/lVI (�1)��H~G�7IWI, (5,33a)

K= �GH~/IVl= (�1)��H~G�~llWl. (5,33b)

It follows from eqs. (5,26c) and (5,31) that

v V=H~w, (5,34a)

W~v=H~w, (5,34b)

from which we obtain

= K(w~+ g~p~)/H~=:~(x, z,p),

(5,35)
g~=�(w~w~�w~w~)/G=(v~v~�v~v~)/K.

The last equality can be verified immediately by using the expression (5,26c) for w~.The quantities g~
and h~J= (ir~ir~� ~i~)/L = �(p~p~� p~p~)lH~connect the 4 quantities v~,i~, p~and w~in a
symmetrical way: in addition to the relations (5,35) we have

p~=ir~�h�~�v~, =K(p~+h~w~)/H~,

(5,36)
a a. ab p aw,.~� v,~ g~1rb. a
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Furthermore

g~h~= 4(K� H~)/K. (5,37)

We next want to calculate the value of the functional determinant (ap~jav~)of the Legendre transform
v �* p. In order to do this it is convenient to introduce the quantities k~= p~/H~�comparesection 2.5�. It
follows from eq. (5,8) that

~

and since

~ dL=~r~dv~,

we get

-T~dk~=~Q~[d1~-j(7r~iT~_ T~)dv~]~

or, because of eq. (5,12),

dk~= �L�H~
2S~Q~ � � ir~ir~)dv~], (5,38)

from which we obtain

ok~/av~= ~ ~T~)]. (5,39)

In order to calculate the determinant of the 2n X 2n matrix (5,39) we observe that

I(S~Q~)l= ISx = ISl~1012,

where S x 0 is the Kronecker product of the matrices S and 0 [e.g. Bellman, 1970, ch. 12]. According
to eqs. (5,11) and (5,22) we have

SI = �LH~, lot = (�1)�~�LH~1

and therefore get

I(ak/av)I = ~ D~:=(~b-~(1r~1r~�T~T~))~. (5,40)

Furthermore, because
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ap~ H~\ p a H~~�p

and since (6~,,+ a1bk)t 1 + a~b1[e.g. Bellman, 1970, p. 83, exercises], we get

� �H~
11�� ~ a

i~ / � c ~ H PaWs

which, when combined with eqs. (5,27), gives

= �LH~2�/K= kap/ak)L1 . (5,41)

Eqs. (5,40) and (5,41) provide the final result

kap/av)j (ap/ak)j (ak/av)t (�1)�1KH~2L1~D~. (5,42)

We see that Caratheodory�s generalized Legendre transformation is regular if KLHCDC  0, cc.

5.2. Applications and examples

(i) Since the canonical momentum of a field variable plays an important role for the canonical
quantization of a classical system in the framework of quantum field theory [e.g. Bogoliubov and
Shirkov, 1959; Bjorken and Drell, 1965; Itzykson and Zuber, 1980], it is important that Carathéodory�s
definition of the canonical momenta p~is, at least, compatible with the conventional one, ir~,in the
case of free fields: Here it is decisive that for one real field, i.e. for a = 1, the definitions of p�~and ~r~�
coincide. Since for free fields the internal degrees of freedom are quantized independently � the creation
and annihilation operators for the two spin components of a free electron are uncoupled and can be
treated independently. The same holds for the two polarization states of free photons�. In other words:
Suppose that the Lagrangian L for n fields Za can be decomposed into a sum L = ~ La, where each
La depends only on Z�~and v~,but not on any other ~ and v~,b a. Then for each La Carathéodory�s
canonical theory is the same as the conventional one, because each La contains only one internal (field)
degree of freedom. More generally, we learn here, that any given Lagrangian L should be decomposed
into �irreducible� parts, before applying Carathéodory�s formalism!
Example:
The Lagrangian for a free Dirac field ~/i(x)can be written as

L y~�a~-(a~)y~çfr)-mç~çfr,

= ~± ~o ~0 = (F
2 �E2)

y
1=y°a~, a

1(° ~.), j1,2,3,

where the o~are Pauli�s spin matrices.
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Because of the �odd� form of the matrices y� the above Lagrangian does not decompose into a sum
of 4 terms (4 complex terms plus their 4 complex conjugates), each of which contains only one of the 4
(complex) components of ~fr.However, a unitary Foldy�Wouthuysen transformation

~�~e�~i, S=�iy�p�O, ~= tan�(LPI), p=�ia1,

diagonalizes the operator �ia3a~,+ my°and gives the required decomposition [Foldy and Wouthuysen,
1950; Bjorken and Drell, 1964, ch. 41.

(ii) L = ~ va . va � V(z), V�~. Va := g~”’v~v’~,where the �potential� term V(z) is assumed to be
invariant under 0(2) transformations

z=(~)~2=Cz,CEO(2).

This invariance implies that we can transform the matrix (Rae) = (Va . vb � 6abL) into diagonal form.
Then the eqs. (5,8) and (5,18) take the form

p~(v
1~v1�L)=H~ir~,ir~=g~�v~,

(5,43)
p~(v2v2�L)=H~rr~,

and

H~=_~(v1. v1�L) (v2~v2—L)

=~(v1v1+v2~v2)+V(z)4(v1.v1)(v2.v2). (5,44)

It follows from eqs. (5,43) that

(prpi)(v1v1—L)2=I—I~v1~v1, (p
2p2)(v

2~v2—L)2=Icf~v2~v2,

which, together with eq. (5,44), imply

L2(pi .pi) (P2~P2)= H~(v1. v1) (v2 v2). (5,45)

Eq. (5,45) relates the two invariants

z.1(v)=(v1~v1)(v2v2)�(v1v2)2,

zi(p)=(prpl)(p2p2)(prp2)2.

From eqs. (5,43) we get in addition
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Pi P~+ P2~P2 (v1 . v� + v2 v2)(1 � zi (v)/L2) + 4V~i(v)/L2. (5,46)

Combining this relation with eqs. (5,44) and (5,45) we obtain

= ~(Pi Pi + P2~P2) + V(z) (1�
1i (p)lH~). (5,47)

For .~1(p)  0 eq. (5,47) is a cubic equation for H~.This is just one example for the algebraic
complexities associated with Carathéodory�s canonical theory for fields.

(iii) E-Dynamics in one space and one time dimension�see eq. (3,46)�:

L = ~(F01)
2�V, F

01 = a0A1 � a1A0, V =

We have

~ ~= c90A
1+a

1A°=�E

and

T~=�E90A
1�L, T~=�E9

1A�,
(5,48)

T/~=�Ea0A°, fl=�E81A°�L,

and therefore the eqs. (5,7) take the form

Lp~=E
2~9

1A
1, Lp?= �E29

1A°---EL,
(5,49)

Lp/)=�E
2aOA1�EL, Lp~=E2a

0A°.

For V= 0 the transformations (5,49) are the same as those in eqs. (3,47) for A 2, i.e. the Legendre
transformation (5,49) is singular for V= 0. This can be seen immediately from the value of the
determinant Dr�compare eq. (5,40)�, which in our example has the value 2E

6 V/L4. Thus, we have the
amusing situation that in the present case Carathéodory�s Legendre transformation (5,49) is only regular
if the interaction term JaA�~does not vanish!

The eqs. (5,49) imply

L(p~+p~)=E2(a
0A°+~1A�), (5,50a)

Lp~=2EV, P:_Pi+PoPoiPio, (5,50b)

E
21T1, I~l= P~P~� P~P~� (5,50c)

Tj = �L(~E2+ V) + E2(~
1A°80A

1 � 3
0A°31A

1).

Because TI = �H~L,the eqs. (5,50b and c) give

H~L= 4V2Ip~/p~ (5,51)
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and

L=�2VH~/(2H~�IpI). (5,52)

The last two equations combined lead to a quadratic equation for H~:

H~+4%~pIH~lp~= 2IpI2 V/p~, (5,53)

with the two roots

H~= �2V1pl/p~±(2/p~)I(VlpI)l(1 + p~/2V)112. (5,54)

Since 1 +p~i2V=(~E2+V)21L2, the square root in eq. (5,54) is always real. The choice of its sign
depends on the relative sign of V and I ~I(or I TI) and the relative sign of ~E2� V and ~E2+ V. The two
solutions (5,54) coincide if p~= �2V, which implies H~= IpI~L = �2V or E2 = ~2JaA�. Up to now we
have not imposed any gauge condition. Possible choices of the gauge are: According to eq. (5,50a) the
Lorentz gauge 8

0A°+~31A
1= 0 implies p°

0+p~= 0. A more interesting gauge in the context of the
model is ~A° 80A

1 � 3
0A°31A

1 = 0, because then, according to the above expression for ITI, eq.
(5,50c), H~takes the simple form H~=~E2+V. The vanishing of the functional determinant (a~Aa)I
means that the two functions A°and A1 are not independent. This happens in most gauges: The gauges
A°= 0 or A1 = 0 reduce the number of dependent variables to just one, where Carathéodory�s
canonical theory is the same as that of DeDonder�Weyl.

(iv) An interesting example for an application of Carathéodory�s theory to a physical system is the
relativistic string [Kastrup and Rinke, 1981]:
Dependent variables are the four coordinates xa, a = 0, 1, 2, 3, of the Minkowski space M4,
independent variables are the two parameters ri�, ~t = 1,2, �cc<r1<+oc, 0~cr2ci.The dynamics of
the string, which was already mentioned in section 4.6, can be derived from the Lagrangian

~ 1 a$ a J3 a (c
s4Va$t V � V

1V2 V2V1 ,

too [Schild, 1977]. This Lagrangian gives

1 � [ I3( \2 $( .

1Tagais~vi~V2, v2~V1 V2)j,

(5,56)
2 [ t3( \2 P( .

7iaga,3~v2~vi, Vi~V1 V211,

and therefore

= ~LS. (5,57)

The eqs. (5,56) and (5,57) imply

I-Is = �L~ (5,58a)

p~= —ir’~. (5,58b)
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We still have to express H~in terms of the momenta p~:Because

I 2 2 1_I

ITaITO 1Ta7T~~t~aOs,

we get

Pats palS = 4VatsV~L~ 16L~, PaI~ P~~~P3� P2aP~~

If combined with eq. (5,58a) the last equation gives

� (1 ~43\I/3 (ç

c � ~16Pa/3P I

5.3. Canonical field equations

The canonical field equations in Carathéodory�s framework are unpleasantly complicated. In special
cases they become simpler and we shall see in section 5.4 that they can be cast into a remarkably simple
form by a canonical point transformation! Like in chapter 3 we can derive the canonical field equations
by means of the 2-forms

1(t9a)dI2c, i(a/ap~)dQ~, i(~9~)dQ~,

dQ~=H~2dH~AO1AO2�H~1(dO�AO2�61AdO2)

= _dHCA(HCdxIAdx2+~hbSdzhAdzs)/Hc+dp~ AdZbAd~E~P/Hc)dp~AdZbAdZs,

which vanish on the extremals ~ In the following we assume that Carathéodory�s Legendre
transformation ~ L�*H. is regular, i.e. that the determinant D~in eq. (5,40) does not vanish.
Then we know from our general discussion in chapter 3, where the determinant (3,33) here is equal to
D~,that we have ~a = df� � ~ dx~= 0 on the extremals Z�~= fa(x) with ~ z, p) given by eq.
(5,35). According to eqs. (5,34a) and (5.35) we, therefore, can write the first set of the canonical field
equations in the following two ways:

afa(x) V~(x,z,p) = ~ z,p), (5,60a)

or

~ (5,60b)

The eqs. (5,60) may also be derived from the fact that the 2-forms

i(a/~p~)d[2~= �w~(H~dx�A dx2 +~hb.dzb A dz~)/H~+ dza A d~� E~~(p~/H~)dZaA dzb =:

(5,6l)

vanish on the extremals Z� fa(x)
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Example:
From the Hamilton-function (5,59) we obtain

8(l)x =~H~2ga$[p~(Pl�p2)�p~(p2~p2)], (5,62)

= ~H~2gaO[p~(pI ~p2)~p2ts(p� Op�)].

The second sett of the canonical field equations can be derived from the vanishing of the 2-forms

i(aa) du1~= - OaHc(Hc dx� A dx2 + ~hb
5dzb A df)/H~+ (hablHc) dH~A dzb � dp~A di,.

+ (1/He) e~~(p~dp~� p~dp~)A dzb =: Aa (5,63)

for the extremals Za = Za(X) = fa(x) p~= p~(x)= g~(x):

(KIH~)i3aHc � (1/He) h�~JCIHC ~fb + a~.

+ (1/He) (a~f
t�a,.,.p~�

3~fb~ ~ ~jb a~p~)]= 0, (5,64)

where the relation (5,37) has been used. In order to �simplify� the expression (5,64) we can use the
equations

dH~/dx�~�= (K/He) a~H~� afb ~ + a~f�~ (5,65)

which follow from

i(a~)du2~= —~9~H~(H.dx
1 A dx2 + ~hb. dzb A dzs)/Hc+ dH~A d1~.� e~dp~A dz~�=: = 0.

(5,66)

The eqs. (5,65) are generalizations of the relation dHldt = 3~Hin mechanics. Using further that
h~v~= rr~�pt, p~v°~= �T~+ 6~HC(see eqs. (5,12)), afa(x)~~ç&~j(x,z, p) and ir~= KV~p~/H~
(see eqs. (5,8) and (5,31a)), the eqs. (5,64) can be rewritten as

C~~ = �H~i9aHc + C�~3~HC,

z, p) = V~5~,+ p°~w~,6�~� V~p~ç~/H~, (5,67)

C~(x,z, p) = (8~+ GV~
0/IVI)p°~.

The eqs. (5,67) may also be derived by differentiating the relation H~ir~= T~p~:

.11.1 IA
e� + ~�~-~- � � T� P+ T� ~

~a dx~ C dxi� � \.dx� p)f�a °dx~

and using dir~/dx~�= aaL, dT~/dx~= �3,,L and the relations (5,26a+ b), (5,27) and (5,31a).
t Due to a copying error the second half of eqs. (7) in [Kastrup, 1977] is not correct. I am indebted to Prof. Géheniau, Dr. Biran 119801 and Dr.

David from Brussels for pointing this out to me1



92 H.A. Kastrup, Canonical theories of Lagrangian dynamical systems in physics

For n = 1 we have C~= 6~HC,C�1� = 0 and the eqs. (5,67) reduce to
9~.p�2= �8~H~,as they should.

For n > 1 the last term C~~ in eqs. (5,67) does only occur, if the Lagrangian L contains the variables
x explicitly � see eq. (5,26a) �, for instance, if L contains an external current. The eqs. (5,67) take a
much simpler form if one writes them in terms of the variables k~= p~/H~:Differentiation of

= T~k~ and essentially the same arguments as above yield

V~~-k~=�aaHc�(apHc)k~.

As to the interpretation of the variables k~ � which are the ones which were used by Carathéodory
himself (instead of the momenta p~!) � see section 5.5.

We further remark that

dfl~ ~a A

= (KlH~)8aH dx1 A dx2+ (1/2H~)hab dH~A (dz� + i~dx�~)�dp~A

+ (1/He) ~ dp~A dz� � ~ p~dp~A dx�),

from which we get

= �wi� A i(al8p~)Ab E I[w�~],

Aa IaWb A j(aa)Ab ~Aa modl[w�],

= ~P~)~a � ~a A j(8~)Aa ~0mod I[w�, Aa1.

This shows that the 2-forms w~and w~.from eqs. (5,63 and 66) lie in the ideal generated by the forms

~a and Aa!

5.4. Hamilton�Jacoby theory

The basic relation of Carathéodory�s HJ theory for fields is

dS1(x, z) A dS2(x, z) = � ~j~-0~A 02. (5,68)

Comparing coefficients of dx1 A dx2, dZa A dx� and dz�2 A dz� on both sides of eq. (5,65) gives

(5,69a)

(85)~3aS� =: ~fi~(x, z), or p~9
1,S�~ J(t9pS~)I3aS~�= H~~9nS�, (5,6913)

� (p

1ap~� P2aP�b)l1TIc 8aS� ôbS2 � aaS2 öbS. (5,69c)

Inserting p~= ~/�~(x,z) into H~in eq. (5,69a) gives the CHJ partial differential equation for the two
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functions S~�(x, Z). The eqs. (5,69b) mean that the vectors W(a)= p~c
9,~+ Hc3a are tangent to the wave

fronts S~�(x,z) = o-� = const., for we have dS�(W(a)) = p~at9pS�+ Hct9aS~�= 0, where the last equality
follows from eqs. (5,69b). The n tangent vectors W(a) of the wave fronts and the 2 tangent vectors

= 9,. + VI~9aof the extremals span an (n + 2)-dimensional vector space at each point (x, Z) if H~L 0
at (x, Z). In order to prove this, we calculate the determinant I(e~,W(a))I of the matrix

/E
2 p

~ H~E~

With the help of eq. (2,40b) we get

I(e~),W(a))I = I(H~E~� V ~)I= (�1)~lQI =

where the relation (5,22) has been used.
We shall frequently employ the following notation: In HJ theories the quantities v~., ir~,and p�1�

become functions of the variables x and z, v~= ~(x, z), p~= ç1r~(x,z) etc. Instead of introducing
always new symbols ~ etc. for those functions, we shall alternately use the symbols ñ~.,j5~etc. for the
functions ~(x, z), ~/f~(x,z): i3~= ço~(x,z) etc. For instance, ! and T~mean the functions

L(x,z)�L(x,Z,V=çc�(x,Z)), ~x,z)ñ~(x,Z)~(x,z)�6~1.

If we know the functions S�(x, z), we can calculate j3~= çli~(x,z) and i
7~(x,Z) = (oH~/9p~)

(x, z,p = ~fr(x,Z)) and therefore, according to eq. (5,35), the slope functions

çc�~(x,Z) = �.A�~G(~� ~t~)lI Vt. (5,70)

Again, the integrability conditions

(5,71)

will not hold in general.
With ~a = dZz � ~o~(x,z) df we have

dS~�= 3
0S� dx� + 3aS�(óY

2 + ço~dxe~)

= zi~dx°+ 8aS~(~,

+ co~ôaS�.

Comparing coefficients in

dS� A dS2 = L�a1 A a2, aeC = L dx� + ir~w�~

gives

L=L(x,z)=I~iI, i=~4~), (5,72a)
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~ =x~(x,z):= (Z.l)~i3aS~�= aI~I/aV~., (5,72b)

where the relation (5,24) has been used. Because

6~Iz1I= = (t9~S�+ i~aS~)~= ~S�i ~

we have

= x~6~I~I= �a~S�z~. (5,73)

Suppose Z�~ fa(x) is an arbitrary smooth function and q~.(x,z(x))= a,~Z�~(x),then we get L1~=

dS~�(x,Z(x))/dx~,i.e. I~I is the functional determinant of the transformation

x~��~o~��S~�(x,z(x))

and we have

J L[x,Z(x),ÔZ(x)Idx� AdX2JI~IdX1 AdX
2 =J d~tAd~2= J ~d~2= V(G~), (5,74)

where G
0. = cr(G) is the image of G under the map x �* a- and V(G7) is the volume of G~,in a--space!

Eq. (5,74) is a generalization of Hilbert�s independent integral � compare eq. (2,48) �

J L[4 q(t), 4(t)] dt = S2 dS = S2 - S1 (5,75)

from mechanics and was Carathéodory�s starting point for his definition of a HJ theory for fields: In
analogy to the integral (5,75) which depends only on the boundary values of q(t), 4(t) at t1 and t2 via
S(t1, q(t,)), i = 1, 2, the volume integral (5,74) of L over G depends only on the boundary 0G~,= a-(9G)
of G~= u(G).

Suppose Za fa(x) is a solution of the equations 3,~CZa= ~(x, Z), where ~ is given by eq. (5,70),
then f~(x) is a solution of the Euler�Lagrange equations, too. The proof uses the fact that

(5,76)

for arbitrary functions Za(x): Eq. (5,76) follows from the relation

dA~= IA~
1(A~A~- A~A~)dA~, (5,77)

which is a consequence of

~ d~A~= d(A~A�~)= d(A~A~)
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and eq. (5,24). If A~= = dS°(x,z(x))ldx~then eq. (5,77) implies

-p. - - - - d2S0
=0

dx�C � ~� dx�C dx�

With the help of eq. (5,76) we obtain from (5,72b)

Since

= äp.8~S~+ ab~aS~ap.zb(x)

= Da~i~[X,Z, 1) = ç(x, Z)]� abS~oacop.,

where

DaF(X, Z, V = tp(x, z)) = ôaF+ (~9FlaVbp.)aaco~,

we have

~ ~ � BbS�3 (9acO~)

DaILlHX~t9a~P~. (5,78)

On the other hand

Dal~I= DaL(X, z, v = ip(x, z)) = BaL + 71�t,i9aç0.~.,

which, combined with eq. (5,78), gives the Euler�Lagrange equations.
Examples:

(i) L = ~((v
0)

2—(v
1)
2)— V(z). In this simple case we have

p�Cr~~JL, p°=v
0, p

1=�v
1,

H~= ~(p°)
2� ~(p�)2+ V(z)

and the CHJ equation is

I(9p.S�3)I + H~(z,p = ifr(x, z)) = 0, (5,79a)

~i°(x,z)= 3
1S

1 B~S°�B
1S°a~S�= ~o(x,z), (5,79b)

çl?(x, Z) = (90S°B~S�� ~3~S�B~S°= —~‘1(x,z).
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The integrability conditions (5,71) here take the form

(a~S�� i9~S�)B~S°� (a~S°� a~S°)BZS
1 + (Bp.S~)I(B~S1d2~S°� i9~S0i9~zS~)

+
130S 80B~S°�B0S°B0a~S~+ B1S°I9IL9ZS

1 � B
5S

1 B
5B~S°= 0. (5,80)

Eq. (5,80) becomes simpler, if we make the �separating� ansatz S�C(x, Z)= h�C(x)+ W�C(z):

(a~h
1� a~h�)a

5W°�(a~h°�B~h°)a~W�+ I(ap.h~)t(8~W
1c9~W°�~9~W°i9~zW�) 0. (5,81)

If the functions h’C(x) are linear in x, but I(8p.h~�)I 0, then we must have

BZW1 8~W°�B~W°a~W1=0.

These conditions are fulfilled by the special ansatz

= - 1 (~2 + k2~114Ax°+ (V2/A) (~2 + k2)514W(z)

Si = ç~=(~+ k2)~�4Ax�� (V2/A)(,~2+ k2)1�4k W(Z), (5,82)

js, k, A = const.,

which gives

fr°(x,z)=B
1S’B~S°=wW’(z), w+(~t

2+k2)”2,

t/?(x, z) = 8

0S° BZS

1 = k W�(Z). (5,83)

Since I(Bp.S~)I= �A2/2, the CHJ equation

- ~A2 + 1(~O)2- 1(~1)2+ V(z) =0

has the solution

W(z) = J (A2 -2 V(2))112 d2. (5,84)

(ii) Relativistic string (example iv of section 5.2). We have

p~= B(
2)S

2 BaS� � B(2)S~8a52, = ~(t)S~ Ba52 � a(l)s2 Ba51,

Pats = I(~S~�)I(BaS1 B~S2�
t9~S

2B~S1)=: ~iats(T, x),

and from eq. (5,59) we get the equation

(~ Q~\� jl a13\l/3 �

~�(s~)-� I U6Wa$�#� 1 � -
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It has the special solution [Kastrup and Rinke, 1981]:

S1 = �T1 + 2(1 � w2p2~1(x°� wp2O),

52 = � g(p), dg/dp = (1 � W2p2)~2, (5,85)

p = [(x1)2+ (x2)2]112, 0 = tan 1(x2/x 1), w = const.

The solution (5,85) �embeds� the string motion

= r1, x1(r) = p(r2) cos wr1, x2(r) = p(r2)sin WT1,

x3=0, dp/dT2=(1�w2p2)�2, 0<p<w1 (5,86)

which has the momenta

= g~B(l)x~(1� w2p2)~

p~= �g~8(
2)x

ts(1 � w2p2). (5,87)

On the other hand we get from the solution (5,85)

ç1r~=(1�w2p2)1fa(x)+~h(x)Bap,

(fa) = (1, (OX2, �(OX1, 0),

h (x) = 4wp(l � w2p2)2(wx°� 0), (5,88)

çli~= (1 �

These functions ~ coincide with the momenta (5,87) on the extremal (5,86). For the slope functions
çs~(r,x) we obtain from the functions (5,88)� compare eqs. (5,62)�

= g~tsf~(~), (5 89)

= �(1~w2p2)�2g�~ts[~h(x)f~(x)+~sp1

These slope functions obey the integrability conditions (5,71) everywhere in M4 as long as they are

well-defined, not just on the extremals (5,86).
5.5. The geometrical background of Carathéodory�s canonical framework

Let me briefly discuss the geometrical origin of Carathéodory�s canonical theory. It is intimately
related to our discussion of contact transformations in chapter 2. Because it makes hardly any
difference, we assume in this section that the number of independent variables is m > 1, not just 2.

A system of n-dimensional wave fronts in G~4~C R�~ can be given by the m equations

S�C(x,z)=a-�C =const., ~ =i,...,m. (5,90)

Let C = {x(T), z(r)} be a curve inside the wave front defined by eqs. (5,90). Any tangent vector with
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components ~ ~ of such a curve has to obey the equations

B~S�C~+ BaS�C~�= 0.

If we take the special curves ~T= Za, a = 1,. . ., a, we get

B~S�Ck~a+ t9aS�C = 0, k~= BaX� - (5,91)

If we define the differential operator

d/dza := Ba + k~Bp.,

the eqs. (5,91) can be written as dS�C/df� = 0. Since the quantities k~are derivatives with respect to f~,

see eq. (5,91), they satisfy the relations

�592
dza bdzb a~

Furthermore, because of eqs. (5,91) we have

—‘v S”=—BS”B k’3
dZa �C p p. a,

and therefore

= �j(ap.S�)I ~ (5,93)

If we define

then, according to eqs. (5,91), these p~obey eqs. (5,69b) and we see the geometrical background for
Carathéodory�s definition of the canonical momenta k~(or p~):By starting with the wave fronts the
geometrically natural generalization of the canonical momenta in mechanics � see chapter 2� appears to

be Carathéodory�s choice, which is, however, algebraically much more complicated than the con-
ventional one, iTt.

The Euler�Lagrange equations for rn-dimensional surfaces Z� fa(x) which �traverse� the wave
fronts can be obtained as follows: On the intersection the functions S�C (x, z) become S� (x, z f(x)).
Abbreviating the derivatives Bp.f�~(x)by yap. we have

z(x))= BPS� + V~BaS�C=:zj~

and �define�, see eqs. (5,72a and b),
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7T~= BI~IIBV~= (~ BaS~ (5,94a)

and

= rr�1�v~� 8~JzlI= �B~S~ii~. (5,94b)

Because I(~l�1~)I= Ii ~ the last equation implies

TI ~(_I~I)m~iI(Bp.S~)I. (5,95)

If we define H~:= ITI(_I~I)l_m,eq. (5,95) means H~+I(Bp.S~)I= 0. Since

k�Ca = �(BS)~BaS�II(BAS�)I,

we get from eqs. (5,94a and b):

T~�Ck~a= 7T~, or T~�Cp~= �I(BAS~)I1r~. (5,96)

Introducing the matrix

S~= p~v~� 6~HC= (BS)~�CjP, (5,97)

we have

~ = �ô~I(BAS�3)II~I= 6~HC~, (5,98)

from which we obtain

ITIIsl=H~l~Im,

or, because of eq. (5,95),

SI = (�HC)

m~1 LIt. (5,99)

The eqs. (5,98) and (5,99) imply that

= _(_H~)m_2T~. (5,100)

Taking the differential of the relation (5,99) we get

� 1)(_H~)m_2LII dH~+(_H~)m_idILII = S~ dS~ = _(_H~)m_2T�1~d(p~v~.�

and therefore

~ KV~r~�ILII, (5,101)
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from which we get

= BHc/t3J)’1’ = V~T�p./K, (5,102a)

KBaHc = H~BaILII, (5,10213)

KBp.H~ H~Bp.I1i1. (5,102c)

The eq. (5,101) shows that H~is to be considered as a function of x, Z, p, if ILI I is a function of x, Z and v.

In complete analogy to the discussion following the eqs. (5,26) we can derive the relations

T~/K=V~/HC, V~=p~w~—~G,

v~V~=wap.H~, G=p’Caw~—Hc. (5,103)

Taking the differential of T~�Ck�3~= ir~we get, with the help of the matrix

(~g)=(v~.k~�6~),Q~i�r~=Lk~, L=ILII,

the relation

-T~dk~= Q~[d1T~-~(ir~dILII- 1r~dv~)], (5,104)

from which we obtain, with Z� = fa(X)

-T~dk�3~/dx�C+ k~ap.ILII + BaILII = [~~- B~4~-~(ir~ir~ - ~ (5,105)

With the help of eqs. (5,102) and (5,103) the l.h. side of the last equation becomes

KWpb(BbkPa + k~�8p.k~a)+ (KGIH~)~9p.k~� (KIH~)(BaHc + k~Bp.H~).

Because of the definition of d/dZ� and since

~ ~

the relation (5,105) finally takes the form

~ ~ (5,106)

where the properties G/H~+1 = k�1~w�p.,GK = H~Lhave been used. The l.h. side of eqs. (5,106) vanish,
because the equalities (5,92) and (5,93) hold on the wave fronts. On the r.h. side the last term vanishes
because dv~/dx’C= B

2f�IBX�BX�C is symmetric in r� and ~i and we are left with the homogeneous
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equations

Q~(d�n~1�Jdx�C� BbL) = 0. (5,107)

Since I~I= (�1)~~�L/H~,the eqs. (5,107) imply the Euler�Lagrange equations

d~�CaIdX�CBaL0,

if L!HC  0, cc�

As the Euler�Lagrange equations are �dynamical� equations, one wonders which is the crucial
geometrical input which determines the dynamics. It seems to me that the identification (5,94a) is the
crucial one, together, of course, with the assumption that the determinant LI I is to be identified with the
Lagrangian L! In addition we have the important consistency requirement that the derivatives Bp.f�(x)
have to be equal to the slope functions (5,70).

5.6. CHJ currents and complete integrals

We next discuss the conserved current associated with a solution 5� (x, z; a) of the CHJ equation
which depends on a parameter a. As to the notation, it is useful to introduce the following convention:
Let Zb = fb(X) be an arbitrary smooth function, not necessarily an extremal. Then we shall denote the
functions

p~(x;a) = ~i~(x,Z = f(x); a) = (BS)~’CBbS’~[x, z = f(x); a],

H~(x,Z = f(x), p(x; a)) etc.

by ~ and Ii~etc.
It follows from

= BPS� dx�3 + BPz1�(x)BbS�C dx~+

=LI~dx~�+~�da
Ba

that

d~A d~2= A ~2 + G�C da A d.Xp., (5,108)

where

= �1I~dx�C+i?~dz~�(x)

= (~8~z�� ~k) dx� = ~

and
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G�C(X, ~ a)=~�S~(x,~ a)~(x,z; a), (5,109)

G� (x; a) = G�C (x, z = f(x); a).

Since

_d(It~tA~2)=II~2dII~A O�A ~

dk=~dX~+~~da, A~2=I~IdX1AdX2dx�3 Bp’~ Ba

d~�C= �dk,, A dx�C + B~Z�d~i1�A dx�3,

d~1�=-dX�~+~-~-da,

we get

A ~2) [(k2I~I+ k-1~�C)~b + ~ Bp.Zb] ~da A dx1 A dx2,

where the relation S~= � T~has been used. According to eq. (5,100) we have for m = 2: ~I= �1i~I~I~
and since

~2I~I~r~ ~p.z~I~Hk,

we finally get

_d(fI~~~tAO2)~ct(Bp.Z kw~)da Adx� Adx2. (5,110)

Taking the exterior derivative of eq. (5,108) we therefore obtain the basic relation

- k)~+~~= 0. (5,111)

We now can argue in the same way as in chapter 4:
1. If Z� = fa(x) is an extremal, it follows from eq. (5,26c) that

b~� ~ObBp.Z 1~��1cWp~�O

and we see that the current (5,109) is conserved �along� the extremal Z�~= f~(x) which is weakly
embedded in the geodesic field S�(x, z; a).
Examples:

(i) The solution (5,82) depends on the 2 parameters A and k. The current (5,109) associated with the
parameter A is
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= � ~AX° + A1[x° � w(wx°� kX1)](A2�2 V(z))� A~1wW(Z)+ Aw J (A2 2 V(2))~2d2,

(5,112)

= -~Ax�+ A1[X1 - k(wx°�kx1)] (A2- 2V(z))�A~1kW(Z)+ Ak J (A2� 2V(2))~v2d2,

with ~2 = k2 + 1, ~ = 1. For V(Z) = ~Z2 components (5,112) take the form

G°A = �~Ax°+ A~1[x°� w(wx°� kx1)] (A2 � Z2) �~A~wz(A2� Z2)~2+ ~Aw sin~1(Z/A),

G~= �~Ax1+ A~[X1 � k(wx°� kx1)] (A2 � z2) �~A~kZ(A2�Z2W2+ ~Ak sin~1(z/A),

Z(X) = A sin(wx°� kx�).

The current (G~)associated with the parameter k is

= ~A2kw~2x°+ ~k2w~2(kx°+ wx1)(A2 � V(z)) + �~kw~1W(z) � 2A~2kwW(z)(A2 � 2V(Z)),

= � ~A2kw~2x1+ ~kto~�(kx°+ wx1)(A2 � V(z))+ (1 + ~k2w~2)W(z) � 2A~2w2W(Z)

x (A2�2V(z)), (5,113)

W(z) = (A2 �2 V(2))~2d5.

As in the last chapter I stress the fact that the currents (5,112) and (5,113) are not conserved for
arbitrary solutions of the field equations, but only for those which are embedded in the corresponding
geodesic field S�C(X, z; a). In addition we see that the currents (5,112) and (5,113) do not have a
well-defined global charge

I G°A,k dX1,

because these integrals diverge.
(ii) Noether�s theorem, once more.

Let {g(a)} be a 1-parameter transformation group

x� �~[g(a)(x)]� = ~�(x, z; a),

~� (x, z; a = 0) = x�C,

�~ [g(a)(z)]�= ~b(X, z; a),
~ a = 0) =

such that



104 HA. Kastrup, Canonical theories ofLagrangian dynamical systems in physics

dS~(a),~(a)) A dS2(~(a),~(a)) = dS1(x, z) A d52(x, z).

With the definitions

X b
-i-� =X�C(x,z), �-�- =Z(x,z)

a=O (.�a a~O

we have

[~(a), ~(a)1tao = a~S~X�+ BbS�3Z

and the current (5,109) becomes

O�C = ~ i~ = (B~S°~)X�+ (BbS~z.I~)Zt�= � ~XP + ~Zb, (5,114)
Ba a=O

where the relations (5,72b) and (5,73) have been used. For an extremal Z� = f~(X) the expression (5,114)
becomes the usual Noether current associated with an invariance group g(a) of the Lagrangian form
L dx� A dx2 [Noether, 1918; Hill, 1951].
2. Complete integral. As in the case of the DWHJ theory we can define a complete integral for the CHJ
theory, too: Let 5� (X, z; a) be a solution of the CHJ equation which depends on 2n parameters a ~,

1, 2, b 1, .. .,n such that

I(B~/.s~/Ba~�)I 0, (5,115)

then S�(X, z; a) is called a �complete integral� and the 2n currents

G(x)=~LI~(x, Z =f(x))
Ba b

are conserved along any extremal Za = fa(X) which is embedded in the geodesic field S�C(x, z; a). As in
chapter 4 let us assume we have found 4n functions g~-�(x)of x which obey the equations

(5,116)

identically in x for all v and b and for which the 4n equations

Oi~b(XZ;a)g~b(X) (5,117)

have n solutions Z� = fa(X) then the functions f�(x) are extremals. The proof is completely analogue to
that in the case of the DWHJ theory: Inserting the expressions (5,117) into eq. (5,111) it follows then
from the property (5,116) that

(B
0Z�(x)~F~.� k~v~�p.)B~/Ba~= 0, (5,118)

which, due to the inequality (5,115), implies
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� 0

and we see that the functions fb(x) obey the first set (5,60) of the canonical equations. Furthermore, we
have proven above that any such function, embedded in a field 5� (x, z; a) obeys the Euler�Lagrange
equations which, on the other hand, guarantees the validity of the second half (5,67) of the canonical
field equations!
Example:
For the solution (5,82) we obtain

(B~/i°/BA Bi/i°/Bk~�A 0
~Bcbn/BA B~fr1/ak) -

which shows that it constitutes a complete integral.

5.7. The canonical E. Holder transformation

In mechanics a transformation

t-~I=i~(t,q,p), q’-~4’=&(t,q,p), pj-~=1~(t,q,p)

is conventionally called canonical* if there exist 2 functions i~Yand F such that the following relation
holds

O:= �fIdI+j5
3d4~

�0+dF=�Hdt+p1dq~+dF. (5,119)

Since dO = dO the equations of motion derived from 0 have the same form as those of 0:

d4�/dI= BH/Bj51, dj3~,/d1=�B11/B4�,

The function F which can depend on any of the sets of variables (t, q, p), (1, 4, j3), (t, q, j3), (t, 4, p) etc. is
called the �generating function� of the canonical transformation. It follows, for instance, from eq. (2,14)
that the time evolution (t0, q(to), p(to))�~(t, q(t),p(t)) of a physical system is a canonical transformation
which is generated by the function S(t, q; t0, q0). The situation becomes more complicated if we try to
define canonical transformations for a field theory characterized by the form

(1 = �H dx� A dx
2 + ep.~p~dz�~A dx� + flab dz� A dz�.

At first sight a transformation

x�C�~�=~��(x,z,p), za~+2a=.~~~(x,z,p), (5120)

*See however Abraham and Marsden [1978]and Arnold 11978] who use a different definition.



106 HA. Kastrup, Canonical theories ofLagrangian dynamical systems in physics

might be called �canonical�, if there exist functions .(i and ~ab and an exact 2-form dI, such that

(~= (1+d~,

= ~I~1d~�A d~2+ Ep.pJ5~ d~A di� + flab d2a A d2”

has the same rank as 12. Since d.O = d12 the field equations derived from 1~will have the same structure
as those associated with 11. However, the additional term d~in general will change the rank of 12, and
therefore the properties of the associated wave fronts. Thus, if we want 12 to have the same rank as 12
we have to require d. = 0 for a canonical transformation. In the case of Carathéodory�s canonical
theory we shall call a transformation (5,120) canonical, if there exists a function H~= ~ ~, j3) such
that

= O~A 02 = �H~0� A 02 = 12 0� = �I-~1dI� + j5~di�. (5,121)

We here are not interested in the most general canonical transformation, but in the following special
point transformation [E. Holder, 19391:

x�C~~�=X�(x,Z), Za~Za=Za. (5,122)

Such transformations have the following properties and implications: If Z� = f~(x) is asmooth function,

then we get

d~�/dx�= B,,X�C + BX�Cva =:A�1~, v~.= 3~z�(x). (5,123)

Since ?(~)= Z�(X), we have

a � d.z � dz dX = ~aA�3 �5 124

� dx�C � d � dx� � �C

and the eqs. (5,122-124) imply

~ dI�C = v~dx� + ~B~”w5, (5,125)

because

~ di� = AI� v~A~(aS�C dx� + B~�Cdzb)

= AI� v�
0 A~p.(A~dx� + B~�C~b)

With di�~= dZa we therefore obtain for ~ = di� � ~ d~�C

= (
6�b - ô~Bb~’C)wb, (5,126)

which shows that the ideal I[wa] is transformed into itself: If the (Ob vanish, then the 3� vanish, too.
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Furthermore, we have

O�C=_Hd~�C+J3�C.dia

= �II~(a~T�dx� + BaX� dz”)+~1’dz’~

=�I~�~B,,J~�~

and therefore

~H1O�AO2HI(B~�)Idx�Adx2 ~

+ B~X2(H~oCX� +j3~)dx�A dza +�~�

= �H~10~A 02.

Comparing coefficients of dx� A dx2 and dz� A dx� gives

= .F~~I(B,,X�)I (5,127)

and

p~= B~X�(�I~I,~~ + j3~), (5,128)

or

= H~BaX� + B,:X�Cp~.

The transformation properties of L and ir~ are obtained as follows:

With

a� Id~�C+i~r~th�

= ~ dx� + B~.~�(w�+ v~dx�3)] + � t~ B
1,X�) ~b

i�~B~X�)w�,
T�� ~�~��6�CL

p~ a�

1p p

we get from L~â�A = L~a�A a2:

L = ~IAI, A = (At), (5,129)

and

= A~(*~� t~B~X�),
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or

IAI (i~1�� T~B~X~)= A~~. (5,130)

If we denote by

= X�(l, 2), Z� = 2� (5,131)

the inverse of the transformation (5,122), then we get the corresponding inverse transformations for the
other quantities by interchanging in the above formulae all quantities with a �hat� by the correspond-
ing ones without a hat and vice versa. For instance, the inverses of the formulae (5,127) and (5,128) are

= H~(ñ,,X�)(, 8,, := B/al�, (5,132)

I(t9~X�)Ip�~= HcBaX� + BpX�J5~. (5,133)

Because of the identities

x�C = X�CFX(x, Z), z], 1� = ~k�[X(x, Z), Z],

we have the relations

B0X� B~X�= 6~ , B~X�CBaX� + BaX� = 0, B~X�BaX� + BaX� = 0. (5,134)

The importance of the transformations (5,122) lies in the following remarkable special case FE. Holder,
1939]:

= x~, 12 = o~= S
2(x, Z), ja = Z°. (5,135)

Since S2 obeys eqs. (5,69b), pP~B~S2+ H~BaS2 = 0, a comparison with eqs. (5,128) gives

B
2S

2j3~=p~, j3~=0. (5.136)

The equations j3~= 0 have a number of very interesting consequences: For ~ = � we get
= �6~I~I~and therefore it follows from LJ3~= S2p.1T~1��compare eq. (5,13)�that

(5,137)

This implies �I�~p.= �~Land we have

I4~= -1~I(~)I= = - L = I~. (5,138)

Thus, in the E. Holder frame the Hamilton function I~~Cis equal to the canonical energy density i�~,if x�
is the time coordinate, which it is in most physical systems!
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Combined with .EICIi-~.= = i�~ft~.eq. (5,138) gives

(5,139)

Furthermore, the complicated canonical eqs. (5,26c) and (5,67) become very simple and familiar:

Because K = T~= H~it follows from
K~i3~T�1�= K~�~T~=BH~/Bj3~

that

dI�/dl� = aI~Jaj3~. (5,140)

Because j3~= 0, ~I�~= 0, we have oft~/8l�C= 0 and the coefficients C~and C~in the eqs. (5,67) take the
form

ê~j=i4~o~,~ ~�~=O. (5,141)

We therefore get as the second set of Carathéodory�s canonical field equations in the E. Holder frame
the �mechanical� equations

d~~/dl1= � aH~/ii2�. (5,142)

Before going into the interpretation of the above fonnulae and illustrating them be examples, let us
derive the transformation properties of the other quantities:
The matrix A = (A~),eq. (5,123), has the form

�1 0\
~LI2 LI2)~ (5,143)1 2

so that

A = A� = ~ (~ ~) (5,1~4)

and it follows from eqs. (5,124) that

= v�~� (LI~/LI~)v~, ~ = V~/LI~. (5,145)

Since LI = 8p.S2 + V�p. i9~S2we obtain from eqs. (5,145)

LI~= (B
1S

2+ z3~B~S2)(1� z~
(5,146)

LI ~= B
2S

2(1 � t5~BaS2)_1.
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The inverse of the eqs. (5,130) is

Ap�C~IAI(i~~Tp�BaX�),

which in our special case implies

= (�~r~.+ T~BaS2J8
2S

2)JLI~

= 1T/,(6~+ t)~BaS2/i9
2S

2)ILI~, (5,147)

because, according to eqs. (5,134), BaX2 = _BaS2/ 8252. The transformation (5,130) itself takes the form

ir~ LI~(~�T/~8~S2)=~LI(~5~�t~BaS2),
(5,148)

T~, LI~i~(6~V~ BaS2)+LBaS2,

from which we get

LI2p.7T~~LI~L8aS2=L8aS2. (5,149)

The eqs. (5,148�149) can be used in order to prove the consistency relation

~2 oL i9 2
~Ta = ~ ~~LI4

2)
8V2 By2

= ~

Because 02 = ~ do-
2, our canonical form u2~= 1~becomes in the E. Holder frame

12~~~~O1Ada-2, O1_~~~dl1+j3~dia, (5,150)

which shows that on the �characteristic� hypersurfaces S2(x, Z) = a-2 const. the system behaves like a
mechanical one, in accordance with all the formulae derived above and which are valid on these
hypersurfaces.

If we take S2 = a-2 = 12, the CHJ equation in the E. HOlder frame follows from

d 1 A do-2 O~A do-2, (5,151)

so that

3
1S�+HcO, l3�a�BaS�, (5,152)

again as in mechanics!
From

d 1Ada-2d~1Ad 2=dS1AdS2
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we obtain the transformation properties

= I(~9p.5�)I/B25
2,

(5,153)
BaS1 = (B

2S
2 BaS� � B

2S
1 B~S2)/B

2S
2.

Furthermore, if 5� and ~ depend on a parameter a, we have, instead of eq. (5,151),

d~1 A do-2 = 01 A do-2 + ~� da A do-2
Ba

= �H~01 A 02+ G� da A dip., (5,154)

BS~-

G� =�LI�
Ba

The first equality in these equations implies

G1=BS�/Ba O2=0, (5,155)

where 0� = const. on the extremals in the E. Holder frame (compare section 5.6). Because 01 A do-2 =

�H~01 A 02 we further conclude from eq. (5,154) that

Ad52 G� da Ad~p.,

from which we get

= LI ~BS�/Ba, G2 = �LI ~B~�/Ba. (5,156)

An application of the above formulae can proceed as follows:
Since

(B,S~�)=(~ ~

we have

(á,,X�) = (B~k�C)_1= ~ (9~~_B52)

and since t9~X2= BaS2IB
2S

2, we obtain from eqs. (5,133)

P’aB2S2Pa, P2aHcBaS2BiS2pa, p~:=j5~. (5,157)

Inserting these values for p~.and p~into eq. (5,127),
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B2S
2H,, = H,,(x, Z = 2, p~,= B

2S
2Pa, P~= 1I~BaS2 � B,S2p~), (5,158)

x�=11:=t, x2=X2(t,o-2,i),

we obtain an algebraic equation for .F~,,(t,z, p), the Hamilton function for the effective �mechanical�
problem in the surfaces S2 = const. The integration of the canonical eqs. (5,140) and (5,142) may be
simplified by �energy� conservation in the surfaces S2(x, Z) = const.:
Suppose the function H,, does not depend explicitly on the coordinate t, then we have H,, = E = const.
in the surfaces S2(x, Z) = const.
Examples:

(i) H,, = ~((p�)2� (p2)2) + V(z). Here we have

p1 = B
2S

2p, p2 = �I~~B~S2� B,S2p

and eq. (5,158) becomes

a
2S

2H,, = ~(B
2S

2p)2� ~(II,,B~S2+ B,S2p)2 + V(z). (5,159)

This is a quadratic equation for I-~1,,.However, in order to calculate the derivatives BH,,/Bp and BH,,/BZ
we can differentiate eq. (5,159) directly and obtain

[B
25

2+ (Ii,, BZS2 + p B
1S

2) B~S2]= p[(5
2S

2)2 � (B,S2)2] �14,, B,S2 B~S2, (5,160)

[B
2S

2+ (14,, BZS2 + p B
1S

2) BZS2I

= B~V(z)+ B
2B~S

2(p28
2S
2� 14,,) � (14,, B~S2+ BiS2p)(I~T1,,B~S2+ p a

1B~S
2). (5,161)

As to the integration of the equations

z=B121,,/Bp, ,O=�BH,,/Bz,

the following method seems to be of interest, provided B
1S

2 = 0, B
2B~S

2= 0:

From

dt dZdt dZ Bp BZ

and the eqs. (5,160, 161) we obtain

= [�a~V+~1I~B~(B~S2)2](a
2S

2)2.

If the r.h. side is a function of Z only, for instance, because i4,, = E = const., we can calculate p(z) by



HA. Kastrup, Canonical theories ofLagrangian dynamical systems in physics 113

integration

~p2(z)= J di [-a
5V+~14~ B5(B~S

2)2](B
25

2)2. (5,162)

If the factor (B
2S

2)2 (B
2S

2 + H,,(B
5S

2)2)� in eq. (5,160) does only depend on z, too, and not on t, we can
integrate

dt/dz = p~1(z)(a
2S

2)2 (B
2S

2 + 14,, (B
5S

2)2). (5,163)

This method works for the special solution (5,82) for which

B
2S

2 = w112A, .14,, = w�2A, B~S2= _V2A_1kw1~~2(A2_ 2V)�2,

so that

~i42,,a~(B
5S2)2 = �k

2B
5V

and eq. (5,162) becomes

~p
2(z)= wA2(A2� 2V(z)),

where the constant of integration has been chosen appropriately.

Since

B
2S

2 + 1,,(~9~S2)2= ~3=Aw ~[l + 2A~2k2(A2� 2 V)],

eq. (5,163) becomes

dt/dz = w1[1 + 2A2k2(A2� 2V)](A2� 2V(z))�2,

which gives

cot + const. = J d2 (A2 �2 V(2))�2+ 2k2A2 d2 (A2 � 2V(2))�2. (5,164)

Since S2(x, z) = a-2 = const., we obtain from eqs. (5,82) and (5,84)

2k2A2 J d2 (A2 � 2V(2))�2 = kx2 � V2A11I2o-2,
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which, combined with the expression (5,164), gives

J di (A2� 2V(2)~�2= wx1 � kx2+ a, a = const. (5.165)

This equation, when solved for Z = f(wx� � kx2), provides us with a solution of the original problem.
(ii) Relativistic string.

From eq. (5,85) we obtain

= 0 , B(
2)S

2 = ~, B~S2= �(1� w2p2)�2 BaP,
(5,166)

(8ap) = (0, e~,0), e
0 = (x�, x

2)Ip,

and therefore the eqs. (5,157) take here the form

P�a~Pa, p2a�HcBaS2. (5,167)

From eqs. (5,166, 167) we get

(aS2)2 = �(1� w2p2) , p (aS) = p e~(1�

(aS2) := (B
0S

2, . . . , B
3S

2)

and by using the Hamilton function (5,59) the third power of eq. (5,158) becomes

(B(
2)S

2)3 11~= H,,~= �~(B(
2)5

2)2.14~[Co. p) (as2)2 � (p (BS2))2]

or

14,, = ~[(p . p) + (p. e~)2](1� w2p2). (5,168)

In the following it is convenient to use polar coordinates p and 0 in the (x�, x2)-plane. Since p,, = (pea),
(p1)2 + (p2)2 = p~+ p~/p2,the Hamilton function (5,168) takes the form

14,, = ~[(po)2� (p~)2� (po)21p2](1 � w2p2), (5,169)

i.e., the pr-term has dropped out of 14,,. The �mechanical� equations of motion are

10= ~p
0(1� w

2p2), l~= � ~p~(1� w2p2),
(5,170)

p=0, 0=�~p
0(1�w

2p2)/p2,

and
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Po0, J~13~O, p,=0,
(5,171)

ji,, = � ~p~p~3(l� w2p2) + 2co2pci,,(1 � w2p2)�

= 2p2(w2ñ~� O2)(1 � w2p2)~.

We fix the constant Pu such that ±0= 1, i.e. x°= r1 and Po = 2(1 � w2p2)�. We further take p
3 = 0 and

x
3 = 0. Since p

9 = const. and p = const., it follows from the last of the eqs. (5,170) that 0 is constant, too.
We take 0 = cu, which implies H,, = 1 and therefore, according to the last of eqs. (5,171), ~, = 0, which is
compatible with p9 = 0. We thus have the following special solution of the equations of motion (5,170,
171):

x°(T�)= r
1, x�(T1) = p cos cur�, x2(r�) = p sin (UT1, x3 = 0.

The T2 dependence of p we can derive with the help of eq. (5,62):

= ~H~2g~~$[p~~(pi~p2)�p2~(p�.~l)]

According to eqs. (5,166, 167) we have

p1.(8S2)0, p�.p�(1�w2p2)�.

Taking further into account that H~= ~and B,,S2 = �(1 � w2p2)�2Bap we get

(B(
2)x~)= (1� w

2p2)�2 (0, e~,0), (5,172)

which coincides with the r2-dependence of p in eq. (5,86)! The Lagrangian 1~= p,,~� .i4,, corresponding

to the Hamilton function (5,169) is
L = 14,, = [(±0)2 � (±3)2� p202] (1 � cu2p2)�. (5,173)

5.8. Embedding a given extremal into a system of CHJ wave fronts

I finally want to mention, how � at least in principle � a given extremal Z� = fa (x) can be weakly
embedded in a geodesic field S�(x, z) of Carathéodory. The basic idea and the first proof is due to
Boerner [1936]. It was essentially improved by HOlder [1939], elegantly put into the framework of
differential fonns by Lepage [1942b]and further discussed by Van Hove [1945b]:
Since the CHJ equation is one partial differential equation for two functions S1(x, z) and S2(x, z), one
first tries to construct a function S2(x, z) which obeys the transversality condition

Hc BaS2 + fr~B
9S

2 = 0 (5,174)

in the point (~,f(x~))of the extremal, where j3~= p~ti),it,, = H~(i,f(i), p(~)).Having found such a
S2(x, z), we can use it for a E. Holder transformation as discussed above in order to reduce the problem
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to a �mechanical� one which then can be treated in the standard way mentioned in chapter 2. The
(local!) construction of S2(x, z) can � in principle � proceed as follows: Consider the plane

= ~� + (~3~/k,,)(z� fa(~)) (5,175)

with �running� variables (x, Z), through the point (~,f(,~))of the extremal. Since

dx�C
= � (fl/H,,) a~f�(l)=

ux z�f(i)

and since ~5�~= �H,,L, compare eq. (5,11), the eq. (5,175) can be solved for ~ in a neighborhood of (~,
f(x°))if H,,L 0. Suppose this is the case and let ~� = ~�(x, Z) be the result. If s2(~)is a smooth function
of the variables f�, ~ = 1, 2, then

S2(x, z) = s2[~(x, Z)] (5,176)

fulfills the transversality conditions (5,174). This can be seen as follows:
From eq. (5,176) we get

B,,S2 = (Bs2/B~�°)B,4�, BaS2 (Bs2/B~”)Bar. (5,177)

The derivatives B,,
5~�,Bat� at Z� = fa(~)can be calculated from the identity

= x� � [p~)/H(~, z(~),p(4::))] (z� _fb(~)), ~ = ~(x,z),

from which we get

Bp.~ = + (fl/k) t~

Bat� = 13~~ik,,+ (fl/k) Z~

These equations can be rewritten as

0 0 0

~ ~~���~�H ~ ~PQV.
0VpA~ ~-�p �p. ,,, a~, pPa,

or, since T~S~�~ TI,

or a~~�=�~r~iL, (5,178a)

Ba~�ITI= �T�~j3~, or Baa� = ~/L, (5,178b)

where the relation (5,8) has been used. This same relation implies that the expressions (5,178) for Bp.~~

and ~ when combined with the eqs. (5,177) fulfill the transversality conditions (5,174).
The simplest choice for s2 is ~2(~) = ~2 which gives B~s2= ~ BaS2 = ~ The expressions (5,178)

suggest the following linear ansatz for S2(x, z) in the neighborhood of an extremal Za fa(x):
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S2(x, z)= x2+ (fr~(x)/t)(z� fa(x)), (5,179)

with the derivatives

= B~(~fr~IL)(Za � fa(x)) � ~p.iL, BaS2 =

which for Za = fa(x) are the same as those obtained above, eq. (5,178).

5.9. Bibliographical notes

Carathéodory�s important paper on a canonical theory for fields appeared in 1929. As far as I know it
has not received any attention in the physics community. It was first taken up by Boerner [1936]who
summarized it and proved that any extremal could be embedded in a system of CHJ wave fronts. The
most important analysis of Carathéodory�s theory is due to E. Holder [1939]who recognized its close
relationship to Huygens� principle and who discovered the canonical transformation which reduces the
dynamical equations to corresponding mechanical ones.

The special role of Carathéodory�s theory within a more general canonical framework became clear
through the work of Lepage [1936a, b, 1941, 1942a, b] who made clear, in terms of differential forms,
that Caratheodory�s theory is unique in the sense that it is the only theory which has a fundamental
canonical form with minimal rank r = m, where m is the number of independent variables. This
property implies that the associated transversal wave fronts have the same dimension n as the number
of dependent variables.

Lepage�s results were discussed by Boerner [1940b,1953]. See also the textbooks by Funk [1970]and
Rund [1973].

An evaluation of the theory in the light of more modern differential geometry (global aspects,
algebraic topology, foliations etc.) is due to Dedecker [1953, 1957, 1977, 1978, 1980 (with Tulczyjew)].
His papers and results, which are not easy to understand, at least by a physicist, are waiting for an
interpretation in physical terms. The same expectation applies to the related work by Vinogradov [1977,
19781 and Kupershmidt* [19801.

There is no doubt that the wave fronts, transversal to the extremals, play a very central role in
Carathéodory�s approach to the calculus of variations [1930,1935, 1937], in the tradition of the ideas of
Huygens, Cauchy, Hamilton, Jacobi and WeierstraB [E. Holder et al., 1966]. A similar emphasis on the
�wave� aspects of dynamical systems can be found in the work of Vessiot [1906,1909, 1912, 1913, 19141,
reviewed by Juvet [1937].

In view of the extremely strong influence the HJ theory of mechanics has had on the development of
quantum mechanics, perhaps HJ theories for fields will have some influence on the future develop-

ments of quantum field theories, too!

6. Canonical theories for fields with m independent variables

6.1. The general case

The extension of the discussion in the previous chapters for systems with two independent variables
to systems with m >2 independent ones is straightforward and does not bring anything new concep-

*~ehowever, the references added in proof!
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tually. I shall, therefore, be rather brief here and shall only indicate some essential points:
If

w=LdxlA.~Adxm, L=L(x,z,v), (6,1)

is the Lagrangian rn-form which defines the system, then it belongs to an equivalence class of rn-forms,
the most general representative 11 of which consists of cu plus a linear combination of all rn-forms � with
arbitrary coefficients � which are obtained from dx� A A dxtm by replacing 1, 2, . . ., or all of the dx�
by the 1-forms cu� = dZ� � yap. dx� which vanish on the extremals where v�p. = ap.f�(x) and which
generate an ideal I[w�]. To be more specific, let us assume that we have a system in Minkowski space
M4 with coordinates x°,. . . , x3 (in our units the velocity of light c has the value 1). Then LI has the form

LI = L dx°~ A dx3 + h~cu� A d3~p.+ ~h�~(0� A A d25p.~

+~habc;p.&)aAWb AWC AdX~+~habcsWaAwb AWC AWS, (6,2)

where

d3~p. ~Ep.a~ydx� A dx~A dx5, d2Sp.~= ~ dx� Adx~.

Here rp.~~is the totally antisymmetric tensor with r
0123 = +1. The coefficients h�~are antisymmetric in

the indices (j.~,v) and (a, b) separately, the coefficients h abc;p. completely antisymmetric in (a, b, c) etc.
Thus, the term habcs can only occur if n  4. The coefficients h~,h~J~etc. can be arbitrary functions of x,
z and v!

As before, the coefficients h~are determined to be equal to ir~= BL/Bv�p. by the requirement that
dIl 0 (mod j[~a])!

The Legendre transformation v~—*p~,L—*H, is again implemented by inserting on the r.h. side of
eq. (6,2) for cu� the expression dZ� � v�p. dx� and identifying H with the resulting negative coefficient of
dx°~ A dx

3, and the canonical momenta p~with the coefficients of dZ� A d3Xp. etc. If habc;p. = 0,
hab,,s = 0, we obtain

(6.3a)

H=~vZ�~h~vZv~�L. (6,3b)

In performing the calculations, the following identities are useful [seee.g. Misner et a!., 1973, Box 5.3]:

E��d3~p.dx�Adx~Adx~, dx~Ad3~p.=3~dx°A~-Adx3,

dx� Ad2Sp.~=S~d3~p.~d3~v,

dxaAdxP Ad2Sp.~=(~-~)dx°A�~Adx3.
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If d(h�~)/dx� 0 where d/dx� = Bp. + V”p.Ba + v�p.~8/Bv~,v~= v~p.,then

h~j~v�p.vt=~-(h~z�vt). (6,4)

If h~ = const. we have such a situation. In that case the momenta (6.3a) can be derived from the
�equivalent� Lagrangian

L*Lh~v~v~. (6,5)

Examples:
1. E-dynamics, with Z� A�, a = 0, 1, 2, 3, v�p. =

L ~Fp..F�~j~A�, Fp.~ 8p.Av BAp..

Possible choices of h�~are:
(i)

= Ar�~,,,,5, A = const. , E0123 = 1 �E1023 etc., (6,6)

h~Bp.A� B,~A�~�= Arp.~~~~9�A�B�A�~

= = A s�~A~a,A~.

The choice (6,6) for h�J therefore gives a �divergence� term which one encounters in the context of
�anomalies� associated with U(1) axial vector currents in abelian (and nonabelian) gauge theories
[Adler, 1970; Coleman, 1979].
(ii)

a$ \aJ3 /3a),

from which we get

p~= �B�A,. + (1� A) a~A�+ AÔ~I9~A~,

p�p. = 3A Bp.A�,

or, inversely,

A(A 2)op.A� = gp.~g�~p~+(1�A)p�p.+ (A �2)~p~.

The transformation Bp.A” �~p�~is singular for A = 0, 2. For A = 1 we have

= � a�A,,, + ~ a,,iv~ (6,8)
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with

p°0=B1A�, p,°=B0A�.

Furthermore,

~ Bp.A� a.,A~= ~A[(B.,A�)
2 Bp.A� BRA�]

(6,9)

and the effective Lagrangian (6,5) for A = 1 takes the form

L* = ~Bp.A”B”A~+ ~(B.~.A�)2. (6,10)

The term (6,9) is well-known in the context of quantizing the e.m. field [e.g. Itzykson and Zuber, 1980,
pp. 11�12].

Remarks:
(a) According to (6,8) the momentum p°~is a function of the variables A�, j = 1, 2, 3. If we define A°

by GauB�s law, which yields A°= �LI�B
0a1A� in the case of free fields, then the commutation relations

[p~(x), A”(y)]~o~o= �i3~�6(x� y), j, k = 1, 2, 3, are compatible with the 2-point function

(0lA�(x)A~(y)~0)=�i(g�~� flaB$+flPBa ) D~(x�y),

(6,11)
D~(x)= J d~k0(k0) 3(k

2) ~

where n is a timelike unit vector, n2 = 1, e.g. n = (1, 0, 0, 0). In momentum space the operator acting on
D~~~(x� y) in eq. (6,11) has the form

K�~=

g n~k

and (K�~)has the properties

Ku� = K�~, k~K�3= 0 for k2 = 0, n~K�~= �ku/n k.

The eigenvalues of (K�~)are 0, �1, �1, �2. Thus, the state space associated with the 2-point function
(6,11) has a (positive) semidefinite scalar product. According to a theorem of Strocchi and Wightman
[1974, Proposition 2.2] the 2-point function (6,11) is gauge equivalent to the one of the Gupta�Bleuler
gauge. The propagator associated with the 2-point function (6,11) is said to correspond to a �planar
gauge� [Dokshitzer et al., 19801.

The 2-point function (6,11) can be obtained from the momentum space representation

A,,(x) = (2ir)312 J ~ (aa(k) e~ + a~(k)e�~),
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where [Morgenstern, 1982]

a~(k)=~ea(A)a(k;A), a=0,1,2,3.

Here e~~(A),A = 1, 2, are the usual polarization vectors for the transversa� physical photons, i.e. they
have the properties [e.g., Bjorken and Drell, 1965, ch. 14]

e(A). e(A�) = �5~, k~�e,~(A)= 0, A = 1,2,

~ e~(A)e~(A)= -g~~+ (nak~+ nska)I(n k)� kaksl(n k)~.

With e~(3)= kal(n . k) these polarization vectors, together with the commutation relations

[a(k;A),a~(p;A�)]=2ko~A6(k�p), A,A�=1,2,3,

yield the 2-point function (6,11) in the standard way.
Notice that with this choice of the polarization vectors we have kaaa(k) = 0, so that the Lorentz

convention ~ = 0 holds as an operator equation! The �states� ea(3) a~(k;3)10) have a vanishing
norm, because e(3)~e(3) = 0, corresponding to the fact that e~(3)is a pure gauge term!

(b) The conditions h~= �h~= �h~can be satisfied, too, by the choices

h~= AF~�Fa8, A = const., (6,12a)

= AR�~�~, (6,12b)

where R,~yai3are the components of a Riemannian curvature tensor.
(c) As to gauge invariance we have the same situation as in section 3.4:

The 1-forms w�~= dA~� t9~A�~dx� are invariant under the gauge transformation

A�~�*A~+3�~f(x), 9,~A0~A�~+8,~9�~f(x).

For that reason the form 12 is gauge invariant, if L and the coefficients h~, ha~,;,.etc. are gauge
invariant, too. However, after the Legendre transformation the individual coefficients H, p�~etc. in
general will be gauge dependent, but they will transform under gauge transformations in such a way
that 12 remains invariant!

2. Another interesting example with nonvanishing constants h ~ is provided by the Dirac-equation
[von Rieth, 19821:
If we start with the usual Lagrangian

L = ~ (2y�v~� ii~y�z)� mzz, (6,13)

where z is a complex 4-component column vector and 2 = ~+y0 a corresponding row vector. Here we
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have 8 field variables �because z is complex � which we take to be z and 2 (on the extremals we have
z = z(x)= ~/i(x), v,~.= ä~~(x)etc.). As

aL � i - aL � i
~ �,~Zy , �

the functional matrix (a2L/av~av~)vanishes identically and there is no Legendre transformation.
However, since, with a-�~�= (i/2)[y�, y~],

(~v~)(~~ ç~)(~)= � v~~ = 2~~u�~v~= 2 (2u��v~),

we can choose the (8 x 8)-matrices h�~= (h~g)to be

h�~= iA(9~T ~), A real, (6,14)

and obtain for the Lagrangian (6,5):

L* = ~ (± y�v~� v~y�z)� m2z � ~ (6,15)

which yields the same Dirac-equations as the Lagrangian (6,13) [see e.g., Gasiorowicz, 1966, p. 90].
From this Lagrangian we obtain

jY� :z=-~�=~2y��iAj~jr�~, p~:~�= �-~-y�z-iAo-�~v~. (6,16)

Because of

~ = 6~E
4=

2 I~ig~E4�

the eqs. (6,16) can be inverted:

Av~= ir~p�+ ~iy~z,

(6,17)

(notice that Y�T~v= = ~iy~).

We now can calculate the Hamilton function

H=p~v~+i3,,pv_L

= (iJ3vr~p~+ ~i~y~z � ~i2y~pv+ ~2z)+ m2z, (6,18)
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from which we obtain the canonical equations

~H 1.

- ~H 1 .

and

~H 1 ~.

~ (x)+z(x))�mz(x),

(x)= -~= - ij5~(x)y~+Z(x))-m2(x), (6,19)

which are equivalent to the Dirac equations

iy”a~z(x)—mz(x)=0, ia~2(x)y”+m2(x)=0.

6.2. The DeDonder—Weyl canonical theory

In this theory all coefficients h~j~etc. vanish. The form (6,2) becomes

Qo=LdxoA...Adxs+~waAds~~

= a” Ad3~~�3Ldx°A. . Adx3, (6,20)

where

a” = L dx� + ~ = —T~dxi� + ~ dz�~. (6,21)

Eq. (6,20) shows that u2~may be expressed by the 8 linearly independent 1-forms dx°,. . . , dx3,
a°,.. . , a3 and therefore (2~has the rank 8, if n  2 (for n = 1 it has rank 4, because 1 p-form in p + 1
variables always has rank p [e.g. Godbillon, 1969, p. 30]).

Replacing ~a in 12~by dza � v~dx�, we get

flo=�HDwdx°A�~Adx3+,r~dz°Ad3~~, HDw�1~v~�L.

The DWHJ equation is obtained from

dS� A d32~= �HDW dx°A .. A dx3 + 1r~dza A ~ (6,22)

which implies

a~S�(x,z) + HDW(x, z, ir) = 0, ir~= 3
0S�. (6,23)
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As an application let us solve the DWHJ eq. (6,23) in the case of E-dynamics with external current
j�(x), provided the solution A”(x) of the field equations is known [von Rieth, 1982]. In the Lorentz
gauge a~A�= 0 the Lagrangian has the form

L= ~ —j~(x)z”. (6,24)

On the extremals we have z� = A�(x), v�~= a~A�(x),where LIIA�(x)=j�(x), L1= ~ For i~ =

aL/av”~we get

1T~= —g”~g~v~, (6,25)

and therefore

H = v~iir~� L = ~ +j~(x)z�. (6,26)

In order to avoid confusion, I shall use the following notation, if necessary: derivatives with respect to
x� will be denoted by a(~),those with respect to z� by a~.

In order to have ~ = ä~S,j = 1, 2, 3, for ir~~= �3°1A~(x)on the extremals z� = A�(x), we make
the ansatz

S1(x, z) = �~~A~(x)(z�� A�(x)). (6,27)

Then the DWHJ eq. (6,23) becomes a partial differential equation for S°(x,z):

a(O)s+H(x z ~o)o ir~.=
(6,28)

H = � + ~3(J)A�a~�~A~+ (~iA~(x))(z” � A” (x)) + j~z�.

The characteristic equations are (derivatives with respect to x°= t are denoted by a dot):

= aI~fair~=

= �aH/az� = —/~A~(x)—j~(x)=—a~A~(x),

with the (special) solutions

z�(t)=A�(x)+b�, b�=O, ir~=�a~A~(x).

For S°we therefore get the equation

= �~ + ~� ~(t) = � ~a(~)Aa~”~A~� b”~A~� j~(A�+ b”),

which, with the help of the field equations, yields

S°(x°;b, x) = const.(x) + J L[A(x), 3A(x)] dt � b” [a
0A~]~°. (6,29)
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Taking the �const.� to be —b”(31A~)~0and replacing b” by z� � A”(x) we finally get the solution

S°(x,z) = �(z� � A”(x)) a(O)A~(x)+J L[A(x), öA(x)] dt, (6,30)

which has the right transversality property 1r~= a~S°= �a(O)A~ and which obeys the integrability
conditions

+ ~ = a(~)~O~+

= J�g��
3a~S° for ~i = 0

~ g�~a,
3S� for~=j=1,2,3.

Let S� (x, z; a) be a solution of the eq. (6,23) depending on a parameter a. If z� = fb(x) is an extremal
for which ir~(x)= 8bS”(x, z = f(x)), then, in the same way as in section 4.2, one can show that the
functions

G�(x)=~�(x,z =f(x);a) (6,31)

are the components of a conserved current!
Example [von Rieth, 1982]:
Suppose the vector potential A�(x; a) is a solution of Maxwell�s equations with external current j�(x)
and that A�(x; a) depends on a parameter a (as a consequence of boundary conditions, for instance),
which does not occur in j�(x). Then we get from eqs. (6,29) and (6,27)

G0(x)=~~ = a0A~(x)~A�(x;a)+Jdt~[A(x;a),aA(x;a)],aa z�=A~(x) ôa

(6,32)

G~(x)=~-~ = a~A~(x)-~--A”(x;a).
8a z~=A~(x) aa

Using the field equations one verifies easily that indeed a~G�(x)= 0.

Application: Suppose we have j�(x) = 0, then the plane waves with

A°=0,A’=f~(t—n~x),nf=0,n
2=1,

n = (n1, n2, n3)= (cos a sin /3, sin a sin/3, cos /3)

are solutions of the homogeneous Maxwell equations depending on the parameters a and /3. We have

a
0A~= f�, ÔkA� =

so that L = —~8~A’a�A, = 0,
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Since a0A� = f� = —E’ and, for instance,

aA
1/aa =f� sin /3 (x� sin a � cos a),

we get for the current components (6,25)

G°(x)= �E2(x) sin /3 (x� sin a � cos a), (6,33)

G~(x)= �n� E2(x) sin /3 (x� sin a � x2 cos a).

Since for plane waves the energy continuity equation a
0(E

2) + div(nE2) = 0 holds and since
div[n (x1 sin a � cos a)] = 0, the current (6,33) is indeed conserved. The structure of that current is of
the following type: Suppose g�(x) is a conserved current, a~g�= 0. If f(x) does not depend on x°and if
g~a

1f(x)= 0, then G� (x) = f(x) g� (x) is a conserved current, too!
All other concepts of interest associated with the DWHJ theory, like that of a complete integral etc.,

are the same as in the case of systems with 2 independent variables, discussed in chapter 4 and will not
be repeated here.

6.3. Carathéodory �s canonical theory

With the definitions

a” = L dx� + ~ = � T”~dx� + ir�~dz~.

0� = �H dx� + p~dza, T~= ir~v~� ~L, ~.t,i~�= 1,. . . ,

Carathéodory�s canonical framework is defined by the following expression for the fundamental
canonical form f

2~:

£2. = L1~a~A~ Aam = (�H~)1m01 A��� A O~ (6,34)

Expressing a� in the basis (dx�, dz~)and comparing both sides of eq. (6,34) we obtain

H~= (_Ly~m det(T~),

� (6,35)
~ or Hcir�a=T�pp~.

Again we see that for �large� L

HC=HDW+O(1/L), HDw=1r~v~�L,

which shows that the DW canonical framework�which is the conventional one in physics�is that
approximation of Carathéodory�scanonical theory which neglects all invariants of the matrix (ir~v~)butits
trace!
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If we define R = (v~.ir~� 5~L)= v � LEA, we have, as in section 5.1, with the help of formula (2,40a)

ITIILEmVl~( LE~)~

(6,36)
=(-L)m E~_~vH=(_L)m~IRj,

and therefore

H~=(�L)�~Rl,

like eq. (5,18). The eqs. (5,26) hold for arbitrary m. The same is true for the eqs. (5,27) and (5,29), and
soon!

The CHJ equation is obtained from the relation

dS� ~ A dSm(x, z)= (_H~)ltm6l~ A = L~malA~~�A atm, (6,37)

which gives

+ H~(x,z, p) = 0, (6,38a)

where

p�~=(aS)~a~S,

or

p~a~S�= (a
0S~)la~S�= �H~aaS�, (6,38b)

and

L= {~(, ~ = (~i~ = a~S�+ v~aSS”), (6,39a)

= (A)~a~S~a~i.j/av~. (6,39b)

If S�(x, z; a) is a solution of the CHJ equation which depends on a parameter a and if z� = fb(x) is an
extremal for which the relation

p~(x)= (aS)~�abs~(x,z = f(x); a)

holds, then the current

G�(x)= ~�i~(x, z =f(x); a) (6,40)
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is conserved. The complete integral of the CHJ eq. (6,38) is defined as in section 5.6. The canonical E.
Holder transformation

x
1~I�=x1, ~ ~=2,...,m,

= (6,41)

again transforms 12,, into

A~� AdOm, (6,42)

so that on the surfaces a-� = const. the canonical field equations are the same as in mechanics. All the
details can be derived in complete analogy to the discussion in section 5.7.

Bibliographical notes

The references here are the same as those in chapters 3�5.

7. Hamilton�Jacobi theories for systems with rn-dimensional action integrals which are invariant under
reparametrization

7.1. Consequences of the homogeneity properties of the Lagrangian function

Let ~m) = {x(t) E R~,t E Gm C Rm, m <n} be an rn-dimensional hypersurface in an n-dimensional

Euclidean space. The surface ,~m) is supposed to be an extremal of the action integral

A = j L(x, u) dt1 . dtm, (7,1)

where the variables u~, ~t = 1, . . ., m, i = 1, . . ., n become the derivatives a(~)x�= ax/at� on any
surface ,~m)in the neighborhood of I(om). In order that the surface Z~m1has an intrinsic geometrical
meaning the action integral A has to be invariant under any smooth one-to-one reparametrization

1� = ~� (t), 1� t� = T� (~, (a~�/at~)I>0,

of the surfaces ~(m) As

= axz/aI~= a(~)xaT~/at�= u’~aTn/at~,

d11 A .. Adtm = I(aiyat)I dt� ~ A dtm,

it follows from

L(x,~)dtlA...Adtm=L(x,u)dtlA...Adtm
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that

L[x, u (aT/al)] = (aT/ai)I L(x, u). (7,2)

Physically interesting examples of systems the Lagrangians of which have the property (7,2) are

(i) m = 1: geodesics, where L(x, u) = (g~~(x)u~u�)�2. (7,3a)
(ii) m = 2, n = 4: relativistic strings [Nambu, 1970; Rebbi, 1974; Scherk, 1975], where

L(x, u) = const. [(u
1. u2)

2 � (u
1)

2 (u
2)
2]U2 , (7,3b)

a . b = a°b°� a b.

In the following we choose units such that the constant in eq. (7,3b) takes the value 1.
(iii) m = 3, n = 4: relativistic vibrating membranes [Collins and Tucker, 1976] with

L(x, u) = (det(h~~))�2, ~ = u~‘up, ~, ~ = 1,2, 3. (7,3c)

The homogeneity condition (7,2) has the following implications [WilkinsJr., 1944]:

u’~aL/au~= 6~L, (7,4a)

a2L ~~aL~aL
UA

8 �a� Aaij A87j~ (� )

1�� V V

or

•/ a
2L a2L \

uA~
8~au’~au’V ôu~)= 0. (7,4c)

The eqs. (7,4a) are obtained from eq. (7,2) by differentiating with respect to r~: = aT~/alVand setting
(r~)equal to the unit matrix E~afterwards. Differentiating the relations (7,4a) with respect to the
variable u’V gives the eqs. (7,4b).

Another important consequence of the homogeneity condition (7,2) is that it is equivalent to L(x, u)
being a homogeneous function of the Grassmann coordinates

it... it

/ul um\

( ) , i,. = 1,..., n, (7,5)

\ur u~/

alone [Frechét, 1905; Gross, 1916], that is we have

L = L(x, v), L(x, kv) = k L(x, v), k >0. (7,6)

As the coordinates v”” are completely antisymmetric in the indices i1, . . . , i,,,, we have (~)Grassmann
coordinates. In the following we shall denote by ~ the so-called �strict� components v~

11”~”vtt~~��,
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~ < ~ ~ <im. For 2 < m <n � 2 these coordinates are not independent, but obey the bilinear relations

[Hodge and Pedoe II, 1952, ch. 14]

m±1

~ (�1)� ~ = 0 < jm�i, Ji <Im+i , (7,7)
~=1

which define a Grassmann manifold. Suppose the number of the relations (7,7) is r. Dividing them by
N := (v~°v~)1�2and denoting the resulting l.h. side by g~(v),p = 1,. . - , r, we have

~ a
V

Example:
For the relativistic string (7,3b) the number r of constraints (7,7) is one:

g(v) = (v°1v23� v°2v13+ v°3v12)N~= 0,

N = +[(v°1)2 + . . . + (v23)~]�~. (7,8)

It follows from L(x, kv) = k L(x, v) that

(.)aL aL
~t ~ ~ = L (7,9a)

il<<jm

and

() a~L

V av~°av~�~= 0. (7,9b)

The last equation implies

( a2L \
~av~�~av°~)� 0. (7,10)

The vanishing of the determinant (7,10) means that we are dealing with a �singular� variational
problem. For m = 1, where ~ = ut = .~, such systems have been treated mathematically by Cara-
théodory [1935, ch. 13] and, from a physical point of view, by Dirac [1933, 1964] and others. The case
m  2 more recently was analyzed�according to the ideas of Carathéodory�by Velte [1953,1954],
KlOtzler [1961],Fuchs [1973],Beckert [1974].

For m = I Carathéodory [1935,ch. 13] showed that the usual regularity condition I(a2L/av�av~)I 0
in the case of �parametric� problems can be replaced by

/ ~I auiaui~ : ~  0 (7,11)

~ 0
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if the rank of (a2L/au� au’) is n � 1. For details we refer to Carathéodory�s monograph. [See also
Hestenes, 1966, ch. 2, §8.]

In the cases m  2 we have to take the constraints (7,7) into account. This can be done by means of
Lagrangian multipliers:

L�iL= L(x, v)+A�g~(v).

According to Velte [1954]a generalization of the regularity condition (7,11) here takes the form

/ a~L~)~
D := ( t9v~~av°~av(t) J  0 , (7,12)

\ag~/av°~Or I

where O~is the (r x r) zero matrix!
Example:
For the string Lagrangian (7,3b) with the constraint (7,8) the determinant (7,12) has the value —L2/N2
on g(v) = 0 (for the calculation the formula (2,40b) is useful), that is to say, it is �regular� if L  0!

7.2. Legendre transformation

The regularity of the determinant (7,12) is important in the context of the following Legendre
transformation, too: This transformation from the set of variables v~°,A°onto the set P(o, ~ p = 1,. . . , r, iS

defined by

p(t)(V) = .11 aL/av~�~,
1a~= g,~(v). (7,13)

Its functional determinant

/~f2~ ~

ç
av~

1~avu) ~ g~

ag~/av°~ Or

for A” = 0, g~(v)= 0 takes the value DI]. If DL  0, then we can solve eqs. (7,13) for the variables

= V~�~(x,p, ,a), A” = A�(x, p, ,a).

If one defines

G(x,p,~):=L[x,v V(x,p,~),A=A(x,p,~)], (7,14a)

G°~(x,p,,a):=V~�~/G (7,14b)

then it follows from v~0p(
1)= j2 = LG that

dG � G°~ dp(1) = �(dL � 4~dv~°), £(~): = ai/av~°, (7,15)
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or

a~Gdx1 + (-~-�G(i)) dp(t) + -~ d~ = �a
1L dx~� g0 dA”, a~G= aG/axi, (7,16)

ap(~) ~

which implies that for g0(v) = 0 and ~ = 0

a~G= � aLL, aG/ap(I) = ~ (7,17)

If we define H(x, p) := G(x, p, j~= 0), we get for A” = 0, g~(v)= 0, .E ~0:

p(s) = L L(I), H = L, H(x, kp) = k H(x, p),

3H/ap(I) = V(~)/L, ~.H= —a1L. (7,18)

Example:
From the Lagrangian (7,3b) of the relativistic string we get [Rinke, 1980]

L(ap) : = aL/av~�~~= � v(~~)IL(v), L(v) = (� V(a$)V~�~~)�

12, V(~$)=

and therefore

~(~
1I)V(~1I), a,/3�~O 3, (7,19a)

H(p) = (PasP~�~ )h/2 . (7,19b)

Up to now we have ignored the following problem: It is by no means obvious that the derivatives
L(,) :=aL/av~�~belong to the Grassmann manifold defined by the constraints g~(v)= 0, p = 1, . - , r,
too, i.e. it is a priori not clear that the g~(p)= 0, p = 1,. . . , r. However, it was shown by H. Kneser
[1940],Velte [1954]and Barthel [1958]that it is always possible, for L  0, to replace that Lagrangian L
by an equivalent one, L* = L + M(x, v), where M vanishes for g~(v)= 0, p = 1, -.., r, such that

7.3. Hamilton�Jacobi theories

A HJ theory for systems invariant under reparametrizations is obtained as follows [Velte 1954]:
Consider the rn-form

w = L(t1 ~~)dx A . - A dx�~, (7,20)

which for x� = x’(t) becomes

w=L(1)v~dt’A~ Adt
m =Ldt� A~� Adtm.

Suppose that for a family of extremals x(t) there exist functions q~~(x)such that V~°(t)= çc~°(x(t))and
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= d[L(~
1. ~~)(x,v = ~(x)) dx� A-~~A dx��] = 0, (7,21)

then the set {(x, ~(x))} is said to define a �geodesic field� for that family of extremals.
Because the coefficients L(t) obey the relations (7,7) the rn-form (7,20) is decomposable [Satake, 1975,

p. 258] and therefore has rank m. Thus, according to Poincaré�s lemma the property (7,21) implies that
locally

~=dSlA...AdSm(x), (7,22)

so that

/a,,S
1.. .

L(t)(x, v = ~�(x)) = s(~)(x), si,,,,, = ( J . (7,23)

a.~Sm/

According to eqs. (7,18) we have H(x, P(i) = L(
1)L) = L therefore H(x, L(t)) = 1, i.e. the functions s(I)(x)

have to obey the HJ equation

H(x, S(t)) = 1 , (7,24)

which again is one partial differential equation for m functions S
1(x), - .. , Stm(x). Therefore rn � 1 of

them can be chosen appropriately, in accordance with the �transversality� conditions (7,23)!
Example:
For the relativistic string (7,3b) the eqs. (7,19) imply the HJ equation

H = (—s(~~)s~”~1)”2= 1, 5a~(X) = a~S1a~s2� a~S2a~S1. (7,25)

If S�(x) is a solution of the HJ eq. (7,24) and if x� = f�(t) is a solution of the first order differential
equations

L(~)(x(t),V(t)) _ 5(I)(X(t)), (7,26)

then the functions x� = f�(t) are solutions of the Euler�Lagrange equations

a(~)aL/au~�a
1L=o,

too [KlOtzler,1961].
Proof: Expanding the determinant ~ I of the matrix

= (zi~= c9ISu�V)

with respect to the minors S(i) gives [Satake, 1975, p. 78]:

I~I = ~(i)~~ (7,27)

Differentiating eq. (7,27) with respect to u/. and ~9JS�respectively one obtains, see eq. (5,24),
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S(i) av~�~/au~= ~ (91S�, (7,28a)

v°~as(1)/a(aJS�) = ~ u’~. (7,28b)

Therefore we have

aL 3L av~ a ~ �

(7,29)

and, because d(~i�~)/dt�= 0, eq. (5,76),

~3;.(~::)= (a~SV)= a1a~SVu~i~. (7,30)

Using eqs. (7,28b) we get

a~aJsVu~Ll~= a~a1sVv(lo)as(kya(ajs ) = ~ ~

and since

= DIL(~)(x,v = ~(x))= a1L(,)+ av(k) aV~�~

the eqs. (7,9) imply

v°~a~SU)=aLL, (7,31)

q.e.d.
As the functions S�(x) do not depend on the variables t, the surfaces S�(x) = a-� = const.,
= 1, - . . , m, are (n � m)-dimensional. The geometrical interpretation of the transversality properties

of extremals and wave fronts in this case are as follows [Velte, 1953, 1954]:
Suppose we have m linearly independent (�normal�) vectors h~�~= (h~�~,-. . , ~ j~= 1,. . - , m,

which span an rn-dimensional subspace and k~)=(ku),. . - , k�~),~l= m + 1,..., n, (n � m) linearly
independent (tangent) vectors, �orthogonal� to all ~ i.e. we have

h~”~k~1=0,~ (7,32)

In our applications the m vectors h~”~will be the gradients (a5S�,. . ., aBS�). Consider now the two sets
of Grassmann coordinates

h(I)=h(t1...t~)= ( � ~ ) , i~=1,...,n, (7,33a)

\h~-. -h~1

�if h~”~= (a1S”,. . . , a~S�),then we have h(~)= S(i)~,and
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Ii �~+1 . . I
- lt(ni+l) I�~(n)

k~-°= k~��~���~= , i~= 1, - . . , n . (7,33b)

k~”,,,+1)~.

Because of the relations (7,32) the coordinates (7,33a) and (7,33b) are not independent: If (1) is the
sequence (i~+1,.. ., i~)of indices obtained from 1,. . - , n by deleting the set (i) = (i1, . . . , i~,), then
[Hodge and Pedoe I, 1953, ch. VII]:

k~= p(_1)S h(~), s = ~ i,. +~m(n+ 1), p = const.. (7,34)

Given a Lagrangian L(x, v) then one can associate with each rn-dimensional surface element (x, v) an
(n � m )-dimensional transversal surface element

k~= (�1)� L(~)(x,v). (7,35)

If u~= (u~,.. ., u~9,~ = 1, - . ., m, are rn linearly independent tangent vectors of the extremal
x� =f’(t), then we have

det(u5, - . . , urn, k(m+l), . . - , k~)= v
t~L(~)= L, (7,36)

so that the n vectors u
1,. . - , k~are linearly independent, if L 0.

If L 0, then one can always choose a parametrization such that L = 1 on the extremal. For instance,
if L(x(t), v(t)) = A (t)  1, then

11=JA(t)dtl, l~=t~,~=2,...,rn,

is such a parametrization.
An (n � m)-dimensional plane through the point x = f(t), t fixed, of an extremal is given by

y�(t,~)=f~(t)+k�~)~
4, (7,37)

where the vectors k(,S)(t) determine the direction and the variables ~, 4 = rn + 1, . . - , n, the points of
the planes. The functional determinant

y�)/a(t1,. . ~, ~m, ~ .,

is the same as in eq. (7,36) and it is therefore possible to solve the eqs. (7,37) in a neighborhood of
x=f(t) fort� and r:

t� = ~�(x) (7,38a)

= ~4(x), (7,38b)
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and the (n � m)-dimensional hyperplanes (7,37) through f(t) can be characterized by the equations
S�(x) = t� = const. The m vectors (c91S�,. . . , aBS”), ~ = 1, - . ., m, span the space dual to the (n �

dimensional planes (7,37) and therefore the Grassmann coordinates §(~)must be proportional to L(~).
Furthermore, since t� = S”(x(t)), we have

= dS� (x(t))/dt~= d3S�u�~=

and therefore j(~)(= S(i)V~= 1. Because on the other hand v~L(t)= L = 1, we must have L(t) = ~(i) on
the extremals. As i~= 6~,the relations (7,28) become here

= v~�
1asO)Ia(a~s), (7,39a)

aL/au’~= 3
1s�. (7,39b)

Because of their properties the functions S� (x) can be used in order to solve the HJ eq. (7,24) off a
given extremal, but such that on the extremal the eqs. (7,26) hold: Setting 5�

1(x) 5�(x), ~i= 2,. . .,

we are left with a first order partial differential equation for S(x) : = S1(x), which can be solved by
solving its characteristic equations.

If S(x; a) is a solution of the Hi eq. (7,24) and x =f(t) an extremal for which eqs. (7,26) hold, then
the current

G� (t) = ~j~��~ (x = f(t)) (7,40)

is conserved. The proof runs along the same lines as that for the current (5,109) in chapter 5 and will not
be repeated here.

The Noether currents (5,114),

0� =�T~X~�+ir~�Z�

in our case have some special properties: Because of the relations (7,4a) the �energy-momentum�
tensor T~= irff u’~� 6~Lvanishes identically for �parametric� systems. This does not mean that such
systems cannot carry energy-momentum, but merely reflects the fact that the parameters t� are not
physically relevant variables and that any change of them does not alter the physical (or �intrinsic�
geometrical) properties of the system. Thus, the Noether currents here have the general form

G� = 7r~~Zi, Z = ~� , (741)
aa ~

where x� �~1�(t, x; a), I�(t, x; a = 0) = x�, i = 1,. . ., n is the symmetry transformation which leaves L
invariant. The physicalenergy-momentum currents T~�(t)are associated with the translations

x’—~’=x’+a’, (7,42)

which, according to eq. (7,41), give the currents
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T~�(t)=~~-~�(t). (7,43)

One sees immediately that the currents (7,43) are conserved only, 3 ~ir� = 0, if L does not depend on
x, i.e. if a~L= 0. In Minkowsky space T? = ~r~(t)is the energy current etc.

In many cases the DWHJ theory from chapter 4 can be used for �parametric� systems, too. The
reason is that for m  2 the relations (7,4b) in general do not imply that the Legendre transformation
~ �~ir�, L�+ HOW is singular, see, e.g., the relativistic string in chapter 4. Because of the eqs. (7.4a) we
have

H0w=ir~�u�,~�L=(m�1)L. (7,44)

The ansatz

S�(t, x) = 1�rn ~ + ~�(x) (7,45)

reduces the DWHJ equation 3(~)S�+ H0~= 0 to 1� m + H0~(x,~)= 0, ~ a~S”(x).Comparing eq.
(7,44) with the HJ eq. (7,24) we see that

H0w=(rn 1)Hparam. rn�i. (7,46)

Furthermore, suppose the Lagrangiãn L does not depend on x, but only on the �velocities� u~,then, if
x = f(t) is an extremal, the functions

S� (t, x) = ~ (t) (Xi � rn i ~ (t)) (7,47)

are a solution of the DWHJ equation [Rinke, 1981]. The reason is that the Euler�Lagrange equations
here have the form a(~)1r~(t)= 0, so that

rn-i
� rn ir~’u~=~—(m —i)L= —H0~.

7.4. Relativistic strings and electromagnetic fields of rank 2

There is an interesting relationship between the dynamics of relativistic strings x�(t) = f�(t) in
Minkowski space and Maxwell fields of rank 2 [Kastrup, 1978b, 1979; Rinke, 1980; Nambu, 1980;
Kastrup and Rinke, 1981]: If the e.m. field 2-form F ~ dx� A dx~,dF = 0, has rank 2, i.e. if
s~~~Fa$F~ = 0, we have seen in chapter 1 that F has a representation F = dS

1(x) A dS2(x), i.e. we
have

F~,
3(x)= 3~S~1~ ~ 30S

1(x). (7,48)

The r.h. side of this equation has the same form as the functions s~~(x)in eq. (7,25), so that we can
identify s~,

3(x)with F~~(x),if �~F
2:= �~F~,

3F��
3= 1. Suppose F~,

3(x)is such a Maxwell field and
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suppose further that the functions x� = f� (t) obey eq. (7,26),

= �L(v(t)) F(~$)(x(t)), (7,49)

then it follows from our discussion in section 7.3 that x� = f� (t) is a solution of the field equations for

the relativistic string. If �~F~>0, but �SF
2  1, then the same conclusions hold for

s~~(x)= F~,
3(x)(�~F

2)~2. (7,50)

provided we have

0, *F~~= . (7,51)

The latter property is necessary, in order to guarantee that the form s(~$)dx�A dx� is closed. Thus,
given an e.m. field of rank 2 with the properties just mentioned, it determines a first order partial
differential equation for relativistic strings!

Conversely, suppose x� = f� (t) describes the motion of a relativistic string, with Plucker coordinates
v��(t) and such that L 0, then one can always find an electromagnetic field F�(x) of rank 2 with the
property

F”’(x(t)) = A v��(t), A = const. (7,52)

Proof: If the parametrization of the string is such that L(v) = 1, then it follows from the discussion in
the last section 7.3 that it is always possible to find solutions S�(x), ~t = 1, 2, of the HJ eq. (7,25) such
that for a given extremal x = f(t) the relations

= V(r~
3)(t)=

hold! If we define

F��(x)=�As��(x), (7,53)

then ~ has rank 2, because EapynS�~5~�= 0 and obeys the homogeneous Maxwell equations

a~*F~~(x)=0.

In general the functions a~F��will not vanish, but define the current j�(x). If L(v)  1, 0, for the
extremalx = f(t), then one can proceed as follows: If one replaces the parameters t� by t� = S�(x(t)),
then Ia(t)/a(t)I = L(v)  0 and we can solve for t� = t�(t). Inserting these functions into L(v(t)) gives

L(v) = o-(i). If we define F~~(x)by

F~~(x)= —Aa-[S
1(x), S2(x)] s~~(x), —F2 = A2a-2(S�, S2), (7,54)

then not only the homogeneous Maxwell equations a~*F~~$= 0 are fulfilled, but eqs. (7,51) as well.
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Example:
Consider the string motion

x°=t1, x1=A(t2�~ir)coswt1,

x2 = A(t2�~ir) sin wtt, x3 = 0, (7,55)

Aw2/~, 0~t2~,

with

v°�=Acoswt�, v°2=Asinwt�, v°3=0,

= 0, v31 = 0 , v12 = —A(t2 �

and L(v) = A(1� w2p2(t))U2, p(t) = [(x1)2+ (x2)2]1’2(t). A solution of the HJ equation [.s(~$)5(~$)]1/2 = 1
with v~~(t)= —L(v) s~~(x)is

S1(x) = (1 � w2p2)�2 (x°� wp2 arctg(x2/x1)), S2(x) = p, (7,56)

from which we get, according to eqs. (7,54), the Maxwell fields

E(x)= �AA(x1,x2,0)/p, B(x)= AA(O,0,wp). (7,57)

7.5. Bibliographical notes

Most of the relevant mathematical literature on systems which are invariant under reparametrization
has already been quoted in the text above. �Parametric� variational problems are also discussed in the
textbooks of Rado [1951],Funk [1970]and Rund [1973].

The interest of physicists in such systems came with the observation of Nambu [1970], Susskind
[1970]and Nielsen [1970]that the relation between energy and angular momentum for the string is
strikingly similar to the mass�spin dependence of mesons.

Possible relations between strings and electromagnetic fields have been discussed previously by
Nielson and Oleson [1973],Kalb and Ramond [1974],Nambu [1974],Lund and Regge [1976],Englert
and Windey [1978].

The simple relation (7,52) and the importance of rank 2 of the associated Maxwell field was suggested
by myself [1978b,1979] and systematically discussed in the framework of HJ theory by Rinke [1980]
(my presentation above essentially follows Rinke�s work). Shortly afterwards similar ideas were
expressed by Nambu [1980]in a HJ framework which is essentially that of DeDonder�Weyl. See also
Kastrup and Rinke [1981],Ogielski [1980],Nambu [1981]and Hosotani [1981].

8. The property L= 0 as a criterion for singularities in the transversality relations between HJ wave
fronts and extremals

I mentioned already in chapter 5 that, despite its analytical complexities, Caratheodory�s canonical
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theory for fields provides a powerful new handle for the analysis of qualitative properties of field
theories. As a simple example we shall discuss in this chapter what happens, if the HJ wave fronts and
the extremals �touch� each other, i.e. if the sum of their n- and rn-dimensional tangent spaces at a
point (x, z) no longer span an (n + rn)-dimensional vector space. It was already mentioned at the end of
chapter 3 that this breakdown of the general transversality properties happens if H~L= 0. We shall
mainly discuss here* the case L = 0 which provides us with an interesting criterion for bifurcations
(phase transitions) in field theories [Kastrup, 1978a and b, 1981].

In order to get acquainted with the geometrical and physical meaning of the condition L = 0, we first
investigate it in mechanics and then go on to field theories.

8.1. On the initial value problem for the Hf equation in mechanics

We have seen in chapter 2 that the determinant of the (n + 1) x (n + 1)-matrix (2,39) formed by the
tangent vector e, = a, + 4�a1 of an extremal and the n tangent vectors W(J) = p1a, + Ha~of a wave front at
a point (t, q) has the value �H�

1L. Therefore those n + 1 tangent vectors are no longer linearly
independent if HL = 0. Provided the wave fronts are indeed n-dimensional at this point, this �break-
down� of transversality means that the extremal is tangent to the wave front. In analogy to optics [Born
and Wolf, 1975, p. 126; Guckenheimer, 1974] one might call such a point (ta, q~)E G�~a �focal� point
and the set of all such points a �caustic�:

Assume that the points of a light ray in R3 are given by x = x(s), s E [5i, s
2] and the points of a

2-dimensional wave front by x = x(u
t, u2), u E G2. Suppose the light ray x(s) transverses a given wave

front at x = x(u
0), so that we can characterize that light ray by x = x(s; uo). A light ray in the

neighborhood of x(s; u0) may then be characterized by uo+ 6u and one speaks of a focal point, if

Ox Ox Ox 2
x(s+6s;u0+6u)=x(s;u0), or -,~—ôs+-,~---16u+-~—~6u=0,

which means that the tangent vectors Ox/Os and Ox/Ou�, a = 1, 2 are linearly dependent at (s, u0):

(Ox Ox Ox\
det(�,-~�~,-~�-~j =0.

\US c�u uu /

Before we discuss the physical meaning of the conditions L = 0 and H 0, let me deal with the
associated geometrical problem, following essentially Carathéodory [1937, ch. II]: Let q’ =

- , U�, . . .), p1(t; u
1, - . . , u”, . . .), j = 1, . . . , n, be solutions of the canonical equations of motion,

depending on the parameters u”, where a takes at least the values 1, - . ., n, but can go up to 2n. Then
the function o-(t; u) of eq. (2,12) obeys the differential equation

a,a-=�H(t,f,g)+g~af�. (8,2)

Any solution a- = s(t; u) is determined only up to an arbitrary function A(u) of the parameters u. For
the differential ds we obtain

tThe case H~= 0, or I(T~)I= 0, will have to be investigated separately!
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~
(8,3)

=—Hdt+g1df’+C~du”, C~=asIOu”—g1af’/Ou”.

Because of the relation (2,13) the coefficients C are independent of t and we have

(8,4)

As the solutions a- = s(t; u) of eq. (8,2) are determined only up to a function A(u), the coefficients
Ca(U) have the corresponding arbitrariness. They become fixed, however, if we choose appropriate
initial conditions: Suppose that for t = t(u) we have

f
3(t = 1(u); u) =~(u), g

1(t = 1(u); u) = ~~(u), (85)

s(t= t(u);u)=s(u),

where the functions f�(u), ~~�(u)and s~(u)are given. Then eq. (8,3) becomes for t 1:

d~�C~du�=--~Ud1+~.df�,I~1:=H(tJ~),

and we obtain for a-o(t; u) = s(t; u) � ~(u)

do-o = �H dt + g~df’ � (�H dt+ ~ df�). (8,6)

The function o-o(t; u) is that solution of the differential eq. (8,2) which obeys the initial condition
o-o(t; u) = 0. The coefficients C~here have the form

C~= HOt/Ou� � ~ aj�/au�. (8,7)

The preceding considerations can be used in order to construct a solution S(t, q) of the HJ equation
01S(t, q)+ H(t, q, p = OS) = 0, which on the n-dimensional surface t = t(u

1,. - -, u”), q’ = J’(u~,.. ., u”)

has the given initial value

S(t = 1(u), q = f(u)) = ~~(U). (8,8)

Given the functions l(u), f�(u) and ~o(u),the functions ~(u)as defined in eqs. (8,5) are no longer
arbitrary, because, according to chapter 2, the solutions of the canonical equations of motion generate a
solution of the HJ equation, if the Lagrange brackets [u�, u”] vanish. According to eqs. (8,4) and (8,7)
this is the case if

OSoIOu’ = �H(t,j,g)al/Ou� +gkOj�/t3u��_:Fj(g, u). (8,9)

The n functions ~ are to be determined from the n eqs. (8,9). These equations are solvable for ~, if
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det(~= OPk�~ ~ ~ 0. (8,10)

Suppose this is the case. Then we can determine the function o-
0(t; u) discussed above and for the

solution o-(t; u) = a-o(t; u) + S0(u) of eq. (8,2) we have, according to eqs. (8,6) and (8,9),

do-=—Hdt+g1df’, a-(t= l~u)=~o(u). (8,11)

Solving the equations q� = f�(t; u) for the variables uk, k = 1, . . - , n, which is possible provided

~l(t; u) = (af�/au�)l  0, we get u’ = x�(t, q). Inserting these functions into o-(t; u) and g1(t; u) gives
S(t, q) = a-(t; u = x(t, q)) , (8,12a)

çli1(t, q) = g~(t;u = X(t, q)) (8,12b)

and the relation (8,11) takes the form

dS(t, q) = �H[t, q, p = ~/i(t,q)] dt + çb1(t, q) dq�.

Thus the function S(t, q) defined by (8,12a) obeys the HJ equation and has the initial value S[t =

q = f(u)] = So(u).
We here are mainly interested in the condition (8,10), which may be rewritten in the following way:

Since
~ -(~+~\

Ou~� Ow� Ou~),~~~~Op�Ow� Ou~),~

the condition (8,10) is equivalent to

(Ofk/aui),~I 0. (8,13)

The geometrical interpretation of the inequalities (8,10) or (8,13) is the following: The tangent vector of
the extremal (t, q = f(t; u)) at (t,q) = (t(u), f(u)) is ë, = (1, Otf),~(~)and the n-dimensional tangent
space of the surface t = t(u), qi = f

1(u) is spanned by the vectors ~ = (Ot/Ou�, af�/au�, - - .). These n + 1
vectors are linearly independent, if the determinant

., ~  0. (8,14)

Again using formula (2,4Db) and a,f� = aH/ap
1, we see that the determinant (8,14) is equal to the

determinant (8,10). - -

Let us look at some special examples of the initial surfaces t = t(u), q’ = f�(u).
(i) For t = t(u) = t0 = const. the eqs. (8,9) take the form

g~0/k/Ou) = 0S0/Ou’, (8,15)
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which can be solved for the functions gk if

 O. (8,16)

The condition (8,16) is the conventional one that a family of extremals q’ = f�(t; u) does not have a focal
point in the plane t = t

0 [Caratheodory, 1935, §327; Hestenes, 1966, ch. 3; DeWitt-Morette et al., 1979,
App. B; Maslov and Fedoriuk, 1981]. -

If the inequality (8,16) holds, we can solve the equations q
1 = f’(u) for u1 = h’(q) and obtain from

eqs. (8,15):

~~(u)=~~j-=~-~[u = h(q)]~q=J(u) (8,17)

These equations show that the initial surface q� = j�(u), p, = ~j(u)forms aLagrangian submanifold of
the phase space (see section 2.2). The simplest choice for f�(u) obviously is f�(u) = u� with gk = OS°/Ou�.
If u’ = ~, then eqs. (8,15) yield the consistency condition

.~ =~/_j(~uk1_~o(u)).

(ii) Another possibility for choosing the function 1(u) is

So(t(u), u) = So(u) = const. (8,18)

We now have

= ~ -~-~-+ =0, (8 19)

Ow� Ot Ou’ Ow’

and eqs. (8,9) become

gk Of/OW� = HOt/Ou�. (8,20)

If we can solve the equations q’ = j’(u) for u3 = h’(q), then we obtain from eqs. (8,18) and (8,19)

gk ~ (8,21)

because OS
0/Ot= �H (relation (8,11) holds for the initial surface, too) which shows again that the initial

surface is a Lagrangian submanifold of the phase space. Inserting the value (8,20) for Ot/0u
1 into the

determinant (8,10) gives
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(~~fk (t =1) (~,~f~/ ~)+ = I (- a,fk (t =1) ~/i~ + ~ )I

= (LIcI) I(Of�/Ou1)I, L = O,f�~(t= t) g~� .F~. (8,22)

If we take f1 = u~,the determinant (8,22) is, up to a factor H�, the same as in eq. (2,41) if we take t =

there.
A simple example may serve to illustrate the above considerations: L = (rn/2)(f � w2x2). The most

general solution of the associated equation of motion is

x(t) = a cos[w(t � 1) + ~] , p(t) = rn

with the initial values

x(l)=f(u) = a cos ~, p(t) = ~(u)= �rnwa sin ç~.

From

a,o- = L(x(t), ~(t)) = ~mi2� ~rnw2x2

= —~rnw2a2cos[2w(t— t)+2~],

we get

a-(t; u)=~x(t;u)p(t; u)+A(u), (8,23)

where the constant of integration A(u) depends on the choice of the initial data:
(i) If we choose the initial condition

t= l(u)= t
0=0, x(t= 1; u)=/(u)= u,

then we have

p(t = 0; u)= —rnwa sin ~ = g(u)= OS0/Ou = 0, x(t = 0; u)= a cos ~,

so that ~ =0, x(t)= acoswt and

o-(t; u)= �~mwa
2coswtsincot. (8,24)

Eliminating a = x/cos cot gives

S(t, x) = —~rnwx2tg cot, (8,25)

which has

S(t=0,x)=O, p=O~S=�mwxtgcot,
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so that indeed

[(a~S)~+ rnw2x2] = � O,S.

The family of solutions x = f(t; a) = a cos cot, parametrized by a, has a �focal� point at cot = cot~=
because (dx/da)(t = t~)= 0. On the other hand, the Lagrangian for the solution x = a cos cot is

L = ~rnw2a2(1 � 2 cos2 cot).

It vanishes at the point (col= rr/4, ~ = a/\/2). A wave front passing through this point is

S(t, x) = � ~rncox2tg cot = � ~rncoa2.

A tangent vector of the extremal (t, X(t)) at the point coT= rr/4 is (1, —aco/\/2) and a tangent vector of
the wave front is w = (� a,~S/O,S,1) = (�\/2/(aco), 1), so that extremal and wave front indeed touch each
other at the point (cot = IT/4, ~ = a/\/2). However, this point does not show any interesting intrinsic
dynamical significance, contrary to the point (cot, x) = (ir/2, 0). One reason for this is that the
normalization of the potential energy (or of the total energy) is arbitrary: For instance, if we replace the
potential ~mco2x2by ~rnco2x2+ ~rnco2a2,the equations of motion and the initial condition do not change.
However, now the Lagrangian has the form L = �rnco2a2cos2 cot for the solution x = a cos cot and this L
vanishes at cot~= ir/2. We shall come back to this normalization problem in the next paragraph.

(ii) Suppose the initial data are

x(t= t;u)= acos~ =f(u)= u,

(8,26)

So(t(u), u) = � ~rnco2a2(t� r(u)) = = 0,

then we have, according to eq. (8,21),

� . � � OS

0 5 22, , dT
p(t=t,u)=—rncoas1ncc’=g(u)=-~--— =~mcoar,u ~ u

so that

a
2(u) = ~ [1±(1 � co2r’2u2)1’2], sin 2~= �coT�u. (8,27)

For the function a-(t; u) we now get

a-(t; u) = ~x(t)p(t) � ~ug(u) � ~mco2a2 (1� r(u)). (8,28)

Eliminating I on the r.h. side of eq. (8,28) with the help of x = a cos[co(t � 1) + ~] gives

S(t, x) = ~rncox(a2� x2)�2 � ~rnco2a2(t � -~--arccos � ~u~(u)+ ~mco2a2[r(u)� -k-- ~(u)]. (8,29)
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Because it satisfies

O,S = �~mco2a2 �E, OS/Ox = —rnco (a2— x2)�2.

the function (8,29) is a solution of the HJ equation with the initial value S(t = t(u), x = u) = 0.
The focal points of the solution x = f(t; u) = a(u) cos[w(t � t(u))+ ~(u)] here, too, are given by the

zeros of df/du. They will in general not coincide with the points (t, 7) for which L = 0. Thus, it appears
necessary to clarify the intrinsic meaning of the condition �L = 0�.

8.2. The physical meaning of the property L = 0 in mechanics

We have seen above that the Hi wave fronts and particle trajectories become tangent, if either H = 0
or L = 0. In order to analyze the question, when these conditions have an intrinsic dynamical meaning,
we look at the Lagrangian

L = ~rn(~2 + r2çb2) � V(r) (8,30)

of a particle in R3, moving in a rotationally symmetric potential. We first take the normalization of the
potential V(r) to be the conventional one: V(r = 0) = 0 if V(r) is finite at the origin and V(r�* cc) = 0, if
V(r) is singular at r = 0 and finite at infinity. Then the condition H = E = 0 separates the bounded from
the unbounded motions (if both are possible in principle), i.e. the condition E = 0 defines a bifurcation
line in the (1, E)-plane of initial values, parametrized by the angular momentum I and the energy E

[Pars, 1965, ch. 17; Smale, 1970]. This obvious interpretation of the condition H = 0 leads us to look at
the condition �L = 0� from the following point of view [Kastrup, 1981]: If q� = f�(t, u), j = 1, . . - , n, is a
solution of the equations of motion, then

A(t; u)=L[q =f(t; u),4 = a,f(t; u)]

may vanish for certain t = t. We have seen above that such points in general do not have an intrinsic
physical meaning. However, it may happen that A (t; u) = 0 for all t, if the set (ut,. - .) of the parameters
u which determine the initial conditions takes a certain value. We can give an intrinsic meaning to this
condition in the following way:

Assume that for a certain choice of the parameters (u1,...) we have A (t; u) = A = const., i.e. the
Lagrangian is a constant of the particular motion under consideration. If H = E = const., then we can
�renormalize� the energy E �* E + A such that A �* A � A = 0. Thus, the relevant interpretation of the
condition �L = 0� for all t, which avoids any normalization ambiguities of the energy, is

or ~(p
14�)=0. (8,31)

If L = T � V this means that kinetic energy T and potential energy V are constants of motion
separately! This is possible if the particles move along equipotential lines.

For the Lagrangian (8,30) the condition L = const. defines a bifurcation set of points (1, E0(l)) in the
(1, E)-plane, too: V(r) = const. means that r = r0 = const. and this, in general, is just the motion at a
(local) minimum of the effective potential Veff(r) 1

2/(2mr2) + V(r) (the motion at a local maximum is
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unstable, i.e. r0 is a solution of the equation d Ve~/dT(r = ro) = 0:

r~V’(r0) = 1
2/m - (8,32)

Depending on the number of critical points of Veff(r), there can be several solutions r~,i = 1, -.., of
eq. (8,32). Notice that the value of r

0 is independent of the normalization of the potential V(r) � or the
energy E �, as it should. The roots r0 will be functions of the angular momentum I and the parameters
of the potential V(r). For the power potential V(r) = gr~,v > �2, we get

r0 = (l
2/z.’gm)”°~~2~= ro(l), (8,33)

where vg >0 is assumed. For r = r
0 we have ~ = 0, so that the total energy E0 becomes

E0 = E0(l) = l
2/(2rnr~)+ V(r

0). (8,34)

For the potential V(r) = gr~,for instance, we get

~ 72~~/(~±2)

E0(l) = .~± (pg)
2/(V±2)I � (8,35)

2~ \m)

The curve E

0 = E0(l) in the (1, E)-plane again defines a bifurcation set: If r~describes a local minimum
of Ven(r), then, for energies E �slightly above� E0, E � E0 = e > 0 small, we will have a bounded
motion r(t) with two turning points, r+  r(t)  r_, r÷> r0> r_, but for E < E0 there is no motion at all!
(If r0 corresponds to a local maximum of Veff(T), the motion for r < r0, E <E0 will be bounded, that for
r> r0, E <E0, or E > E0, will be bounded or unbounded, depending on the shape of the potential.)

In any case we see that the curves in the (4 E)-plane defined by dA (t; E, l)/dt = 0 separate
qualitatively different �phases� of all possible motions associated with the potential V(r).

At this point let me mention � very briefly � the main idea of the modern theories of turning points
and caustics, in the framework of HJ theories and, more generally, Lagrangian submanifolds [Keller,
1958; Arnold, 1967 and 1978, appendices ii and 12; Maslov, 1972; Berry and Mount, 1972; Duister-
maat, 1974; Maslov and Fedoriuk, 1981; Berry, 1981]: In HJ theories turning points are characterized
by p) = 035(t, q) = 0. Thus, they are critical points of the function S(t, ~ which locally defines an
n-dimensional Lagrangian manifold L~�~with local coordinates (q, p = OS(t, q)). Thus, turning points
correspond to singularities of the map which projects the Lagrangian manifold L~�~on the configuration
space {q}. The set of such singular points is called a �caustic�.

Since the radius r0 of the circular motion considered above can be looked at as the limit of a motion
the two turning points r and r~of which coalesce, our condition L = const. appears to be related to the
�established� theory of caustics. The limit r �* r0, or E �~E0(l) is, however, not without delicacies: Take,
for instance, the determinant

z~’t~I E~—Or t9~o Or Oip�OlOE OEal�

the zeros of which give the focal points of the motion. If we insert E0 = E0(l) into r r(t; I, E) and ~(t;
1, E) before calculating the derivatives Or/Ol etc., then z~(t; 1, E0(l)) = 0 for all t, because the functions



148 HA. Kastrup, Canonical theories of Lagrangian dynamical systems in physics

r(t; I) = r(t; 1, E0(l)), ç~(t;1) = ç~(t;1, E0(I)) are clearly dependent. If, on the other hand, we calculate
i (t; I, E) first, and then the limit E�~E0(1), we encounter singularities: Differentiating

~ V(r)=E

with respect to E gives

m~_J~+(�~+V�(r))~= 1. (8,36)

Because i�~0,(�1
2/(rnr3)+ V�(r))�*O for r�~r

0, then, according to eq. (8,36), the derivatives O~/OE,

Or/OE cannot remain finite in this limit.
Example: Harmonic oscillator in the plane, V = ~rnw

2r2,with the solution

x=acoscvt, y=bsincot,

a(l, E) = (rnco2)512 [E+ (E2 � cu212)�2] 112

b(l, E) = (rnco2)~’2[E� (E2 � co2I2)”2]~2.

The limit r�* r
0 is equivalent to E�* col. One sees that the derivatives Oa/OE, Oa/Ol etc. become singular

in this limit. Ll(t; 1, E) becomes singular, too.
The functions E0(l) of eqs. (8,34) and (8,35) represent the ground state energies of the system for a

given angular momentum. The �bifurcation� functions E0(I) have a remarkable resemblance to the
corresponding quantum mechanical ground state energy levels with vanishing radial quantum number

0. Take, for instance, the harmonic oscillator (v = 2) and the Coulomb potential (~= �1). Here the

functions (8,35) become

E0(l) = col, co = (2g/rn)
112, (8,37a)

E
0(l) = - ~rng

2t~2, (8,37b)

which differ from the corresponding quantum mechanical values

E~m(l) = oih(l + ~), I = 0, 1, . - - (8,38a)

Er(I) = � ~rng2[h(I + 1)]_2 , I = 0, 1, - . . (8,38b)

essentially by the zero-point energies which can be taken into account by replacing the classical value I
by (I + A), where A = ~for the harmonic oscillator and A = 1 for the Coulomb potential. More generally:
for v > 0 the WKB-approximations E~�~(I)for the ii. = 0 energy levels are given by Quigg and Rosner
[1979,ch. 4]:

E~t~(B(I)= [C(v)]2� 2~�~g21t2~[h2(l+ ~)2/mj��12~�~

C(v) vVTr/2F(3/2+ 1/v)/F(l/v), (8,39)
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which again have the same g-dependence as the bifurcation functions (8,35) and the same I-dependence,
if we replace 1 by -n(l + ~). If we make this replacement and denote the resulting functions by E0(I), then
these functions differ from the WKB-expressions (8,39) merely by a normalization factor which depends
only on ii. Thus, for fixed v, the ratios E0(15)/E0(12) and E B(11)/E0WKB(l2) are the same.

Another amusing example is provided by the logarithmic potential V(r) = g ln(r/a), for which we get
from the eqs. (8,32) and (8,34) r0 = I(mg)

512 and

E

0(l) = g(~+ln[l/(a\/rng)]). (8,40)

Notice that the difference E0(12) � E0(15) = g ln(12/l5) does not depend on a andm. The expression (8,40) can

be compared with the WKB-approximation suggested by Quigg and Rosner [1979,p. 206]:

E~�~(l) = g(~ln(IT/2) + ln[h (1 + ~)/(aVrng)]). (8,41)

Thus, if we replace 1 in eq. (8,40) by h(l + ~), the resulting energy levels E0(l) are higher than those
given by eq. (8,41), because ln(ir/2) = 0.451 . . . . Whereas formula (8,41) gives values which are below the
real ones [Quigg and Rosner, 1979, table 6 on p. 206], E0(I) = g(~+ln[h(l + ~)/(aVmg)]) gives energy
levels above the real ones.

These examples strongly suggest that the bifurcation functions E0(l) of the classical systems
provide � after a suitable correction which takes care of the zero-point energy � reasonable ap-
proximations for the corresponding quantum mechanical energy levels with vanishing radial quan-
tum number. This conjecture is supported by comparing the analytical expression E0(l) for the
anharmonic potential V(r) = ~b1r

2+ ~b
2r

4with the corresponding quantum mechanical levels [Kastrup,
1981].

Two other interesting examples with L = const. are the following: For a particle moving in an
external magnetic field B = curl A the Lagrangian is L = (rn/2) v2 + q v A. As v2 = const. for a motion
in a static external magnetic field, we have L = const., if v = KA, K = const. This happens in the
following cases:

(i) B = const., A = �
2B A x. It follows from

rn dv/dt= qv AB= q~(xAB)

that my = qx A B = �2qA, assuming that v = 0 for x parallel to B. Notice that L = 0 in this
example.

(ii) The Meissner effect (�Higgs mechanism�) in a superconductor can be explained by the assump-
tion [e.g. Kittel, 1971, p. 424] that the canonical momentum vanishes: p = my + qA = 0, i.e. we have
v = �(qlm)A in this case.

We observe that for v = KA the circulation Z,~= v dx along a closed curve C is given by

Zc=KJB .dfKt~P~,

where cP~is the magnetic flux through a surface F~which has the curve C as its boundary.
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8.3. The property LH~= 0 as a criterion for transversality singularities in field theories

The condition HL 0 for the linear independence of the tangent vectors of extremals and wave fronts
in mechanical systems takes the same form in Carathéodory�s canonical theory, as can be seen as
follows: According to section 5.4 the tangent space of the wave front S~(x,z) = o~�= const., ~c=

1,. . ., rn, at (x, z) E Gm~�can be spanned by the n vectors

W(a) = H~(k~O,~+ Oa) p�~O,.+ HcOa, (8,42)

and the tangent space of an extremal Z�~= fa(x) can be spanned by

e(~)= 0,. + V�~Oa, V~= O~fa(x). (8,43)

The n + rn vectors (8,42) and (8,43) are linearly independent, if the determinant

( ,n =( ~

v HCE
8) ~V ~J~a)� V ~. ~,

does not vanish. According to formula (2,40b) this determinant equals

v -p)~= (�1)� IQI

and therefore, because of eq. (5,22), we have

( m ��H��L ~844
�xv H~E~)� c -

Thus, again as in mechanics, the transversality relations between extremals and CHJ wave fronts
become singular if H~= 0 or L = 0!

In order to get a feeling for the physical relevance of the condition H~L= 0, we best look at a
number of examples:

We first observe that � contrary to mechanics, where H = const. if L does not depend explicitly on
t � the Hamilton function H~in field theories in general will not be a constant for solutions z�~= fa(x) of
the field equations, even if L does not depend explicitly on x. This can already be seen in the case of
one real scalar field in Minkowski space where H~= ir

1�v,.~� L. Because dii~/dx~= OL/Oz we have

~

and therefore

~H~= (~~)a~-(~)a~f, (8,45)

which in general will not vanish. It does vanish for the special case that L = ~v,~v�� V(z), i~�= v�~and
solutions of the type z = f(x) = f(k - x), k = (kb�) = const., exist.
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The Lagrangian (5,55) for the string is constant on the extremals [Schild, 1977] and since H~= �L for
that system, I-Ia is constant, too.

8.4. Examples of systems in Minkowski space which have solutions of the field equations with L = 0,

especially gauge theories with E2 = B2

There are important Lagrangians in physics which vanish for any solution of the field equations: The
Lagrangian L = \/_g R of General Relativity [Landau and Lifshitz, vol. 2, ch. ii] vanishes where the
trace O~of the energy-momentum tensor vanishes, for instance in regions, where there is no matter at
all.

Another example of this kind is the Lagrangian (6.13) for the free Dirac equation which vanishes for
every solution of the field equation

iy~O,~Ii�rn~fr=0, iO~Iiy�+rn~s=0.

More instructive is the case, when the fermion fields ~�(x) are coupled to a gauge potential
~ = A�~ta, where t~is an element of the Lie algebra of the group SU(n). The associated gauge fields are

F~= F�p.,,ta = O

11.A~� + ig[A,~,, Ar].

If Ta is a representation of the elements ta of the Lie algebra which acts on the spinor fields ~i(x),then
the Lagrangian of the coupled system is

L = �~tr(F~F~j+ ~ i(~iy~�D~/i� DAiy~/i)� mçbçfr, 846)

D~:=O~�igA~Ta.

For solutions of the field equations the Lagrangian L becomes

L = Lextr = � ~ tr(F,~F�~�)= ~ [(Ea)

2 � (B�~)2]= : ~(E2� B2). (8,47)

Thus we have L = 0 whenever the electric and magnetic energy densities are equal! Solutions with this
property constitute a bifurcation hypersurface in the space of field configurations which separates
electric and magnetic �phases� of the system. Notice that L = 0 is a Lorentz-invariant statement.

In E-dynamics the radiation field has the property E2 � B2 = 0. In nonabelian gauge theories
Coleman�s generalized plane waves [Coleman, 1977] have this property, too. In addition, any time-
dependent (classical) solution with localizable finite energy of a pure nonabelian gauge theory has the
property lim

5..(E~� B~)= 0 for each internal index a [Glassey and Strauss, 1980; Magg, 1982]. See
also a recent paper by Kyriakopoulos [1982].

An intriguing question is, whether there are nontrivial (i.e. genuinely nonabelian) solutions of the
Yang�Mills equation with the property E

2 = B2. This is a first order condition (for the potentials), which
may be rewritten in the following way: If we define the dual fields by ~ = ~V,F°°, then the
condition E2 B2 is equivalent to *E2 = E2 or *Bz = B2. This Minkowski space condition is strongly
reminiscent of the condition *FILV = ±F~� characteristic for �instanton� solutions in euclidean nonabel-
ian gauge theories [Belavin et al., 1975; Coleman, 1979; Eguchi et aL, 1980 (review with many
references)]. In the euclidean case we have LE = � -~F~�F~/�= � ~(E~ + B~)and the energy density
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~OO = ~(B~� Ei). The passage from the euclidean to Minkowski space is done by replacing x4 by ix°,

A~by iA°and FkE4 by iF�°,so that B~�~B2,E~�~�E2.

Thus, there is a striking similarity between the condition E2 = B2 (L 0) in Minkowski space and the
instanton property E~= B~in euclidean space. In physical applications instantons A~.~~sl)serve as
external �background� fields for Dirac spinors ~1s(x)obeying the equations y�(O,~� igA~’~)~Ii0. The
solutions ~fr(x)of these equations appear to be of considerable interest for the analysis of chiral
symmetry breaking [�t Hooft, 1976a; Coleman, 1979; Callan Jr. et al., 1979; Jackiw, 1980] and for the
calculation of small quantum fluctuations around the classical instanton field [�t Hooft, 1976b; Brown et
al., 1977; Bashilov and Pokrovsky, 1978; Schwarz, 1979 (with many refs.)].

Considering the interesting physical applications of the (euclidean) instanton solutions, the question
arises whether classical genuinely �nonabelian� solutions with the property E2 = B2 of Yang�Mills theories
in Minkowski space would not be similarly useful. Unfortunately, no such solutions are known � at least not
to me! However, already the abelian case indicates that such solutions may be of considerable value:
Let A5’ = A5�(cD), ~ = k

5’x’
4, k2 0, be the vector potential for a radiation field in the Lorentz gauge,

= 0, or k~,A5’= 0. For such a field we have E2 = B2. If we put Dirac particles with charge e in such an
external field, Dirac�s equation

y5�(i0
5. �eA5�)Vi�m~/i=0

can be solved exactly [Wolkow, 1935; Berestetskij et al., 1971, §40]:

~i(x)= (1+~~_k4)u(p)e1s, Ø.:=a5’y
5’,

(8,48)

S=�p-x�~- J(ep.A_~e2A2)d~,

where p2 = m2 and (p � rn) u = 0. Of special interest here is the expression for the current e~/iy5�~Jiresulting
from solution (8,48). It has the form

j5’(x) = -~- O~u[p5’ � eN’ + k5’(ep - A � ~e2A2)/k-p]. (8,49)

The second term j5�~= � (e2/m)üuA5’ on the rh. side of eq. (8,49) is remarkable, because it may be
interpreted as an effective photon mass term (with mass ~ = (e2ü u/rn)�2) induced by the interaction with
the Dirac particles. This interpretation is not so strange as it looks at first sight:

According to Schwinger [1962,1963] an external vector potential A5’ induces in 2-dimensional QED a
current

(8,50)
Lltr ~ = 4O

5~A
5�.

The first term j5’~= —(e2/~)A5’ indeed represents a dynamically induced mass (e2/~)112of the vector field
A”. Anderson [1963] pointed out that Schwinger�s consideration may be applied to the interaction of
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photons with an electron plasma in a solid, where the photons acquire an effective mass (e2n/rn)”2, n:
density of the electrons.

Furthermore, in the Landau�Ginsburg theory for superconductivity [e.g. Fetter and Walecka, 1971, ch.
13] the spatial part j of the stationary �supercurrent� of the pair condensate coupled to the photon has the
form

j = �~grad0� (ne2/rn)A, (8,51)

ifonewritesfor the wave function ~/t(x)= (n(x))1�2 e�°~.The second term JA = —(ne2/m) A on the r.h. side
of eq. (8,51) is responsible for the Meissner effect (�Higgs mechanism�) which gives the photon in the
superconductor an effective mass (ne2frn )h/2. Comparing the current (8,49) with the expressions (8,50) and
(8,51) � the interpretation of which is settled � there can hardly be any doubt concerning the interpretation
of the term j~.= —e2üuA”/m: it represents an induced effective mass of the photon!

This raises the following intriguing question concerning the Higgs mechanism in nonabelian gauge
theories: In order to realize this symmetry-breaking mechanism, one has to introduce scalar (�Higgs�-)
fields, the physical significance of which is highly controversial [e.g. Okun, 1981]. Perhaps it is possible to
implement the symmetry-breaking, conventionally associated with the Higgs mechanism, by starting with a
classical solution of a pure nonabelian gauge theory which has E2 = B2, and then putting the fermions
in such a background field which in turn, acquires a (symmetry-breaking) effective mass by this inter-
action.

Bringing electric charges into asystem which has E2 = B2 in general will drive the system into the electric
�phase� E2 > B2. On the other hand, in chromodynamics the vacuum expection value

(0IG
5�~G5�~�I0~= ~.(0I(B

2 � E2)I0)

of the gluon �condensate� can be estimated to be positive [Shifmanet al., 1979], i.e., this system is in a
magnetic �phase�, in accordance with the heuristicpicture that the QCD ground state is associated with the
�condensation of magnetic monopoles� [�t Hooft, 1976; Mandelstam, 1976].

8.5. The property L = 0 in eulidean field theories and statistical mechanics

Many systems in statistical mechanics in states with long-range fluctuations, Le. in the neighborhood
of phase transitions�can be approximated by a nonlinear euclidean field theory [Landau, 1937;
Patashinskij and Pokrovskij, 1964; Langer, 1965; Wilson, 1971; Moore, 1972; Wilson and Kogut, 1974, ch.
10; Wegner, 1976; Brézin et al., 1976; Amit, 1978; Glimm and Jaffe, 1981].

In d dimensions a popular Lagrangian for an n-component field ~ = (ça1 ~�) is given by

L = O~c+ ~2 ~ ~ + ~A(ç~. ~)2, (8,52)

where A > 0, but sign and value of ~2 is a function of the temperature T.

In statistical mechanics the Lagrangian L is the density of the free energy F [see, e.g., Wegner, 1976].
The field equations associated with the Lagrangian (8,52) are

~ a=1,...,n. (8,53)
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It is evident from the expression (8,52) that for ~c2 0 there are no solutions ~ 0 of the field equations
with L 0. Thus, we need spontaneous symmetry breaking in order to have such solutions: If ~2 <0, then

= (0, - . . , 0, ~), q~= (�~2/A)112 can be chosen to be the ground state of the system. It has
L(çoo) = �~,p~4/A.Multiplying eqs. (8,53) by ~��, summing over a and observing that O,pO~=

(~)2 ~ we see that for any solution of the field equations we have

L = 1[~2 A(pcp)2]. (8,54)

We define ~ = (~1,� . - ~ 0) and assume that there are approximate solutions ~ and ~c�= ~o+X of

the field eqs. (8,53) and the first order condition L = 0 such that

= [(~s)2+ - - + (~c�~1)2]112�~ ç~, (8,55a)

xI<<kc±I. (8,55b)

Condition (8,55a) implies, according to eq. (8,54),

= Ai~p~= ,u4/A. (8,56)

Suppose that ~ depends only on p <d of the variables x�, i = 1,. . . , d, say the p first ones, Then

= A2p~, A2 = ~4/(2pA), = [(x1)2+. - + (x”)2]”2, (8,57)

is a solution of eq. (8,56). The condition (8,55a) here means

(—,a2/2p)112p~~ 1, (8,58)

that is, p~has to be smaller than the correlation length ~ (./~2)_ l12 Inserting the values for ~ and ~
into eqs. (8,53) we get

(8,59)

where ii~ is the Laplace operator in p dimensions. Introducing hyperspherical coordinates p~, q�~i,

01, - . ., ~ in B!� [Erdelyi et al., vol. II, 1953, ch. XI] we have

(8,60)
OPp Pp 0Pp Pp

where D~1is a second order differential operator in the variables 4, O~,. . ., O,,~.The ansatz
= p~A

1(q5,0) for a solution of eq. (8,59) leads to

(p�1)A~+D~A~--p~A1. (8,61)

In the region where our approximation (8,58) holds, we can neglect the r.h. side of eq. (8,61) and we see
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that the �transversal� components ~, b 1,. . - , n � 1, are just the Goldstone modes: zi~co~.= 0.
Therefore the functions A~can be chosen to be surface harmonics Yk(4, 0) of degree k [seeErdelyi et
al., l.c.]. Because

D~Yk=—k(k+p—2)Yk,

we have the consistency condition k2 + k (p � 2) = p � 1, with the 2 solutions

k={~. (8,62)

The value 1 � p is only possible for p = 2. The surface harmonics Y
1(~,0) are essentially the p linearly

independent and orthogonal unit vectors in R�. As to the applications we consider two cases:
(i) Assume p = n � 1 = d � 1 and the field ~ to transform as a vector field with respect to the group

O(n � 1)�the field ~ctransforms according to 0(n)�. In this case the fields form �vortices� the axis of
which is parallel to the x�~-direction.It seems physically plausible to assume that the radius of the
vortices are of the order of the correlation length ~. Let R(a) be a fixed element of O(n � 1). Then we
can put

çc”~=A(R(a)x)”, xER�
t, (8,63)

which obeys eq. (8,57).
Example: ferromagnet in 3 dimensions [Brézin, 1976].
Here p is the magnetization M = (M1, M2, M3), ~ = M~ is the ground state magnetization and

a
0r, a0>0, r= (T� T~)/T~,where T~is the critical temperature.

For the �small� transversal excitations we here have

M±=A(x
1cosa—x2sina,x1sina+x2cosa,0).

From this we obtain for the �molecular� current density: j = curl M = 2A sin a e
3. Thus a constant

current flows in 3-direction! Further remarks concerning the physics of this model can be found in�~
[Kastrup, 1981].

(ii) Assume that the components ~ transform according to some internal symmetry group 0(n � 1),

not related to the group 0(d) of the underlying euclidean space R�. Then, because of eq. (8,57), the
ansatz

requires

~ C~C~x�x�=A
2p~,

b i,j=1

* The discussion of the electric Meissner effect at the end of that paper is obviously incomplete.
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which implies

= A~6,J

and we see that the matrix (C~)/Ashould be an orthogonal one, i.e. the index b has to take p different
values, too. If p <n � I, this can happen if some of the ~ vanish. If, on the other hand, d> n � 1, then
one has to find a p such that p = n � 1.

We still have to determine the correction x = � q~to the ground state ~ = (0 q~>).Under
the assumption (8,55b) we get from eq. (8,53)

ix = Aqco(
2~q~o+ ~) -

Suppose further that ~ Then we get for x the differential equation

lix = ~ = ~O(/~U/2P)Pp (8,64)

which has the (special) solution

= 8p(2+ p) ~oP~- (8,65)

It follows immediately from the inequality (8,58) that the conditions 2Xçco ~ ~t�~± and x ~ are indeed
fulfilled!

There is a nice physical interpretation of the condition L = 0 in statistical mechanics: It was already
mentioned above that in statistical mechanics the Lagrangian L equals the free energy density
f(x)= u(x)— Ts(x), where u(x) is the density of the internal energy U and s(x) the density of the en-
tropy S. For dimensions d > 2 at very low temperatures in general the entropy term TS in F = U � TS

is considerably smaller than the internal energy U and the system can be in an �ordered� phase. With
increasing temperature the entropy term increases and finally dominates, i.e. the system goes into an
�unordered� phase. An approximate measure for this phase transition is the temperature T~for which
U~= ~ i.e. for which F~= 0. Thus, in analogy to the bifurcation phenomena in mechanics discussed

above, the existence of �extremals� with L = 0 indicates the neighborhood of a �phase transition�!
The relation F,, = 0 has been used with considerable success in the statistical mechanics of phase

transitions [e.g. Byckling, 1965; Felderhof, 1970; Kosterlitz and Thouless, 1973; Kosterlitz. 1974; Simon

and Sokal, 1981 (with refs. to earlier papers)] and in euclidean lattice gauge theories [Banks et al., l977~
�t Hooft, 1978; Yonega, 1978; Kogut, 1979; Mack and Petkova, 1979, 1980]. The generalization L 0
may provide a fruitful generalization for the analysis of related problems.

8.6. Bibliographical notes

Most of the relevant literature has already been mentioned in the preceding text. I got interested in
solutions of the field equations with L = 0 by the (obvious) observation that many relations in
Carathéodory�s canonical theory become singular if L = 0: See, for instance, eqs. (5,4), (5,7), (5,10),
(5,18), (5,40) and many others. The special significance of solutions of the field equations with L = 0
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becomes evident only in Carathéodory�s canonical theory, not, for instance, in the one of DeDonder�
Weyl. The reason is, again, the fact that only in Carathéodory�s canonical theory the transversal wave
fronts are n-dimensional.

Singularities in transversality relations play an important role in catastrophe theory [see, e.g. Poston
and Stewart, 1978 (with many refs.)]. Discussions of bifurcations in physics may be found in [Gurel and
Rössler (eds.), 1979] and [Bardos and Bessis (eds.), 1979].

9. Unsolved problems and outlook

The material of the preceding chapters contains far more questions than answers as far as �hard�
physical applications are concerned. Let me, therefore, list in a separate discussion some of those
unsolved problems which appear to be relevant and which might be dealt with successfully in the near
future:

1. In section 2.5 we saw that the propagation of classical wave fronts is generated by the function
F(t, q, k) = H�, where the �wave vector� (k1) is related to the canonical momenta p~by k, = p3IH. It
may be worthwhile to see how a quantum theory of such wave fronts looks like! This might be of special
interest with respect to a quantization of field theories in the framework of Caratheodory�s canonical
theory (see nr. 7 below).

2. In mechanics the HJ wave fronts are the n-dimensional integral manifolds of the canonical 1-form
0 = �H dt + p, dq~on ~ whereas the 1-dimensional extremals are the �characteristic� integral
manifolds of the 2-form dO on R

1~2~with coordinates (t, q, p). In addition, the wave fronts can be
generated by an n-parameter family (�field�) of characteristics. These properties may also be formulated
in terms of �relative� and �absolute integral invariants� [E. Cartan, 1922; Godbillon, 1969, ch. VIII;
Choquet-Bruhat et al., 1977, ch. IV, C].

The situation is quite different for field theories, as we have seen in section 3.3: The wave fronts are
again integral manifolds associated with the fundamental canonical form 11. However, their dimension
now depends crucially on the rank of 11. Furthermore, the 2-dimensional extremals .~ are integral
manifolds of the �variational� system I[i(O

5�) dO, j(Oa) dli, i(O/Op~)dli], or the �proper� variational
system I[co�, dcoa, i(O) dO], whereas, at least in the case of two independent variables, the dimension of
the characteristic integral manifolds of the form dO depends on the rank of the matrix (Op~/Ov~):For
11 = Oo (DeDonder�Weyl) the rank c of dO0 is c = n + 2 + rank (t9ir~/Ovt)[von Rieth and Kastrup,
1983]. Thus, if (Oi�r~/Ov~)is regular, the characteristic manifolds of d110 are 0-dimensional!

On the other hand, for gauge theories, where (Or~/Ov~)is singular, the characteristic manifolds of
dul0 have dimension >0 (e.g. for E-dynamics in 2 dimensions they are given by x� = const., z� = const.,

= 0,1, v/~+v~= const., i.e. the characteristic manifolds are 3-dimensional, with �running� variables
V~,v~and V~j�v~).

We have seen in chapter 3, too, that the problems concerning the involutiveness of the variational
systems are nontrivial. Furthermore, the question arises, how to generalize the concept of integral
invariants to field theories [DeDonder, 1935; Dedecker, 1977a] and what use can be made of them.

All these problems need additional investigation.
3. One of the main problems we encountered in the context of HJ theories of fields is: How to solve

the integrability conditions (4,6) or (5,71). This problem may be rephrased in the following way, starting
again from mechanics:

Suppose, through each point (t, q) E G
1~~passes just one extremal q(t). Such a family of extremals
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can be parametrized by n variables u’, j = 1,. . ., n. Then, in terms of modern mathematics [LawsonJr.,
1977, with many refs.], the region G1~~is �foliated� by 1-dimensional �leaves� q’(t) = f�(t; u). If the
Lagrangian brackets [u’,ui’] vanish, then the 1-dimensional leaves generate transversal n-dimensional
leaves, the wave fronts (see section 2.2). The situation is more complicated in field theories: Suppose,
we have found an n-parameter family of extremals ~a = fa(x; u), such that through each point (x, z)

Gm~~passes just one extremal, then we have a foliation of ~ by rn-dimensional leaves (the
extremals form rn-dimensional submanifolds in Gm4~!).However, we have seen in section 4.4 that such
a foliation in general will not generate n-dimensional transversal leaves (wave fronts), because the
associated canonical form ~Oin general will have a rank larger than m.

On the other hand, given n-dimensional wave fronts 5� (x, z) = cr� = const., ,a = 1,. . - , m, in Gm~�,
where the functions S� are solutions of a HJ equation associated with a canonical rn-form £1, then those
wave fronts are the n-dimensional leaves of a foliation of Gm~�.However, these leaves in general will
not generate rn-dimensional transversal leaves which are the extremals of the variational system of £1,
because the integrability conditions (4,6) or (5,71) in general will not be satisfied. But they may generate
transversal submanifolds (leaves) of dimension less than m, which, in turn, may be helpful for the
construction of the wave fronts.

It is obvious that the integrability problems encountered in the chapters 4 and 5 are part of this
subject.

4. Of special interest are the HJ currents, associated with each parameter an extremal depends upon.
It may turn out that in many cases the conserved quantities generated by such currents will not be very
useful. However, only a detailed investigation of specific models can tell whether the classical HJ
currents generate a structure which may be helpful for the quantization of the system.

5. Another interesting question is, whether the concept of a �complete� integral as discussed in
sections 4.3 and 5.6 can be developed into a workable tool for solving the Euler�Lagrange field
equations.

6. I mentioned already in the Introduction that field theories, when analyzed from a �mechanical� point
of view, are systemswith an infinite number of degrees of freedom, the time evolution of whichtakes place
in an infinite dimensional phase space [Chernoff and Marsden, 1974; Abraham and Marsden, 1978, ch. 5;
Itzykson and Zuber, 1980, chs. 1 and 3]. That approach, which � justly so � is the prevailing one, is to some
extentcomplementary to the more geometrical interpretation adoptedin the preceding chapters. Thus, the
question arises, how these two pointsof view are interrelated and how they can profit from each other! That
relation is important for the corresponding quantum theory, too.

7. That problem which is probably the most important one concerning far-reaching physical
applications of the more general canonical framework discussed above, has hardly been mentioned at
all in the text. Here certainly one will have to deal with difficult problems:

For a quantum field theory not only those configurations of the field variables are important for
which the �classical� relations ~a = dz� � v�

5� dx� = 0 hold, but the �off-shell� configurations are
essential, too! However, we modify the off-shell properties of the fields, if we define the canonical
momenta Pa according to eq. (3,9) with hat,  0. The problems one has to deal with may be illustrated by
two examples:

(i) Suppose we have n (coupled) real scalar fields Z� = coa(x), a = 1, - - ., n, x = (x°, x�), in a
2-dimensional Minkowski space. Then we have ~.° = a0~a ~.1, = ô~~a and the conventional
�DeDonder�Weyl� symplectic structure of the field configurations is determined by the Poisson
brackets [e.g. Itzykson and Zuber, 1980, ch. 1]:
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(9,la)

f~.çO(~)ç~b(y)}~o_~s= ~6(x1 � y1), (9,lb)

{~-°,,,(x),~nb(y)}xsyo = 0 - (9,lc)

The basic relations (9,1) imply

{~a(X) 1~(y)}x°-y~ =0, (9,2a)

{1i-~(x),1T~(Y)}x°y°= ~ab3~(X � yt), (9,2b)

(9,2c)

Assume now that the quantities hat, are �external� fields, that is to say, they are functions of x
only � e.g. constants � and do not depend on the quantities ~a and ir�~.Then the relations (9,1) imply for
p,. = �

{p°a(x),~t,(Y)}x° ~o= 8~ ~(x1� y�), (9,3a)

{p°
0(x),p~(y)}xoyo = 0, (9,3b)

{p~(x),p~(y)}5o=~o= (ôa~ + ~ hach~c)8~3(x� � ~�) (9,3c)

{p~(x),~,b(y)}~o~o = hat,~(X
1� yt), (9,3d)

{p~(x),pi,(y)}~o=
5o 0 - (9,3e)

We see: If we replace the momenta ir~by the quantities p~,then the basic relations (9,1) remain
unchanged, but the relations (9,2a,b) are replaced by new ones. Thus, the symplectic structure � if there
is one at all � of the variables ~ p~is different from the conventional one with respect to the variables
~a and i~!

(ii) Carathéodory�s canonical theory as discussed in chapter 5. The rather complicated relation
between the �velocities� v~and the canonical momentap~at first sight seems to raise trouble if one
compares it with the conventional canonical quantization procedure which used the momenta ir~.On
the other hand, it is certainly very intriguing that this conventional (DeDonder�Weyl) canonical
formalism appears to be the zero order approximation if one expands Carathéodory�s canonical
quantities p~and H,, in powers of L�! Furthermore, we have seen that the canonical E. Holder
transformation (section 5.7) casts a given field theory into a �mechanical� canonical form on the
hypersurfaces S~(x,z) = o�

2 = const., ji = 2,. . ., m. This suggests to introduce for the quantities ~ =

~a(y1 02), Pa = j3~(x�,o,), with x�, y1 as time-coordinates and u = (cr2 - crtm) the Poisson brackets

{j3~(x�,or), z~(y1,O2)}~�=~�= t~ô(o-
1 � i72) (9,4)

with respect to the surfaces S�
2(x, z) = o-�~= const. However, since these surfaces are dynamical ones

which depend on the given Hamilton function H~(x,z, p), such a postulate might not be compatible with
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the conventional �kinematical� Poisson brackets (9,1). In addition: Quantization means that the
variables Za become operator-valued distributions, whereas the coordinates x remain c-numbers. As the
E. Holder transformation �mixes� both quantities, one certainly has conceptual problems for a
�quantized� version of this transformation.

Another perhaps more promising approach to the problem of quantization may be a phase space path
integral formalism in the E. HOlder frame. Canonical transformations in phase-space path integrals are,
however, full of pitfalls, too [Gervais and Jevicki, 1976].

Despite all these difficulties: I have the strong impression that Carathéodory�s canonical theory bears
the possibility for a qualitatively new approach to the quantization of field theories!

Another problem, to be dealt with in the context of quantization is the following: In quantum
mechanics solutions of the HJ equation are useful for WKB-approximations. Similarly, solutions of the
HJ equations for field theories may be useful for semiclassical approximations of path-integrals for
those fields.

8. We have seen in section 3.4 that the use of forms ~ dz� � v~dx� and of the ideal I[w0]
generated by them, provides a natural framework for the description of gauge invariance in E-
dynamics. A generalization to nonabelian gauge theories appears desirable and will probably have to
use covariant differentials [see, e.g., Pham Mau Quan, 1969, ch. V.21; Eguchi et al., 1980, ch. 5]:

Given a connection F with coefficients F~t,we can decompose the tangent vectors X5� = 3,~+

into horizontal and vertical components:

X5�D5�+i5~8a, D5�35�~F~t,Z�~�8a, ~=v~+F~t,zb.

If a� = dz� + F~t,z�dx� is the connection 1-form of F, then w� = cra � i3~dx� etc..
9. The rather uncomplicated �translation� of the Lagrangian L = ~[(v1)

2(v
2)

2 � (yr v
2)

2] for the
relativistic string � eq. (5,55) � into Caratheodory�s formalism [Kastrup and Rinke, 1981], suggests a
similar approach to nonlinear cr-models e.g., with Lagrangians L = ~[(3~~a)2 (,

9~,~,b)2� (a~a19~a)

2]

where the fields have to obey the constraint ~a~a = 1. (As to the literature on nonlinear cr-models see
the articles by Maison [1979],FrOhlich [1980]and Kafiev [1981].)

In addition, the expression A~= ~i(Za3j,Za � (~Za)Za) for composite gauge fields in CP�1-models
[D�Adda et al., 1978] bears some resemblance to the formula A

5� = AS
2Ô

5�S
1, which relates the �wave

fronts� associated with a relativistic string to the potential A
5� of an electromagnetic field of rank 2

[Kastrup and Rinke, 1981].
10. The �bifurcation� condition L 0 (or L = const.) for mechanical systems has to be analyzed

further, especially for many-particle systems. The relation between the classical bifurcation curves
E = E0(l) and the corresponding quantum mechanical energy levels has to be clarified.

Of special interest is to find �nonabelian� solutions of Yang�Mills theories in Minkowski space with
the property E

2 = B2, calculate the quantum fluctuations �around� them and put spinor fields into such
�background� fields.

The condition H~= 0, or (T~= 0, for fields in general has to be analyzed, too.
11. Throughout the paper we have only dealt with differential forms on �normal� manifolds.

However, in recent years �supermanifolds�, with differential forms �graded� into �bosonic� and
�fermionic� ones, have become quite popular in theoretical physics [Zumino, 1976; Sternberg, 1977;
Kostant, 1977; Hermann, 1977; Salam and Strathdee, 1978; Berezin 1979a, b]. Here the question arises,
how the concepts discussed in this review can be generalized to such supermanifolds and what use can
be made of such a framework?
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Obviously there are more open problems! The above list indicates that � at the very least � the more
general canonical framework discussed in the previous chapters allows one to formulate a number of
interesting questions, the answers of which may provide important new insights into the rich structure
and content of dynamical systems in physics.
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