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Apart from the inhomogeneous Lorentz group the
conformal transformations in space-time are the
following:

The scale transformations

xH' = px# | p>0and constant, p=0,1,2,3, (1)
with the property

ds'2 = pZ ds2 , (1)
a
ds2 = (dx0)2 - (dx1)2 - (dx2)2 - (dx3)2 ,
and the special conformal transformations
xb' = o~1(x) (xK - ck x2) ,
2 42 (2)
o(x) =1-2c-x+ca x4
with the property
ds'2 = 0=2(x) ds2 . (2a)

The ¢, which form a four vector, are the four in-
dependent parameters of the Abelian group (2).

Because of (1a) and (2a) the transformations (1)
and (2) may be interpreted as global and local
changes of units of length 1), Here we wish to ex-
amine the problem, whether (1) and (2) can be un-
derstood also in the sense, that they transform one
physical situation into another *. For the scale
transformation, for example, this means: If one
has a physical object, does there — at least in
principle — exist another physical object, which
differs from the first one in its extension of length
by a factor p? In macroscopic physics this cer-
tainly is the case. But there are restrictions in
microscopic physics. For instance, no particle
exists, which differs from the proton only by being
10 times bigger. Similar considerations may be
applied to the group (2).

Nevertheless we conjecture, that also in atomic
physics the transformations (1) and (2) become im-
portant either if the masses of the particles vanish
or if their energies are so extremely high, that

* T am very indebted to some members of the CERN
Theory Division, especially to Professor L.Van Hove
and to Dr. J.8. Bell, for discussions about this inter-
pretation and critical remarks.
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their masses or any other atomic states of discrete
energy are negligible. These conjectures are con-
firmed by the following considerations:

From (1) and (2) it follows, that the infinite-
simal operators of these transformations have the
form

a,, d,=3/xV, 3)

©=0,1,2,3. (4)

In the case of a free particle we may substitute p
for 9, and therefore expect the following constants
of motion, if the theory concerned is invariant un-
der the groups (1) and (2)

D =Et-np (E=1=c), (5)
KO=2tD - (2-r)E ,
K=2rtD-(t2-r%)p

Here r; is the position-vector of the particle at
time ¢, E its energy and p its momentum. For the
time being we further assume that any intrinsic
parts are decoupled from the orbit parts (5) and
(6). The expressions (5) and (6) may also be de-
rived by using the Lagrange formalism

For a free particle we have r = v{ + &, and thus
we obtain instead of (5)

D=Et-(vt+a)p=(m2/E)i-ap.

From this we see, that for m - 0 or E ~ =, D be~
comes a constant in time. In the same way it may
be seen that

2x“x“ay-x28u,

(6)

KO~ a2 FE

K-~ (a2)p - 2(ap) a,

if m—~0o0r E—+x,

Thus, in the limits w - 0 or E -~ « the quanti-
ties (5) and (6) are indeed constants of motion!

The essential question now is, whether there
are physically interesting interactions, which are
invariant under the groups (1) and (2). There are
some, as we shall see. For these interactions we
have the following conservation laws under the lim-
iting conditions considered above:
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If there are [ particles at time f having position-
vectors r;, energies E; and momenta pi; and » pa.r-
ticles at time {', corresponding to rz, E and pz,
then we have in the limits m;, m; ~ 0 or Ez,Ez -

l
gl tE;-rip;= gl ' E} - r;p},
Z
21 24 Ej ~ rip) - (12 - r?) E;

[\/]§

A (t' E' - r' v) - (tvz - rv2) E'

i

1 (8)
2. 2t B - rip) = (2 - P p;

1

n
= gl 2ri(t" Ey - ripy) - (02 - ri2) pj.

The relations (7) and (8) may be useful at ex-
tremely high energies for the kinematical analysis
of experiments corresponding to conformal inva-
riant interactions, for instance for electron-electron
colliding beam experiments, future accelerators for
protons etc. of some hundred GeV and in cosmic ray
physics.

A simple application of (7) is the following: Let
us consider the elastic scattering of two identical
particles in the center of mass system at extremely
high energies — for instance, the elastic scattering
of two electrons in a colliding beam experiment. We
here ignore the spins and all other intrinsic proper-
ties of the particles.

The essential point is now, that the quantity D is
the phase of the particle wave at the centre of the
wave packet, which in the particle picture corre-
sponds to the position of the particle. Since (7) con-
nects these phases before and after the scattering,
we can derive a relation for the phase shift n at ex-
tremely high energies:

In the c.m. system we have p1 + p2 = 0. There-~
fore we put p1 = p, r = r1 - rg on the left hand side
(1) with corresponding definitions on the right hand
side. If we have r = v{ before the scattering, then
the left hand side of (7) vanishes in the limit £1,E o
-~ o, After the scattering we have because of the
phase shift n 3)

Pt =t - 2dn/dp) . O

If we insert this into the right hand side of (7), then,
by the same arguments as above, we have the im-
portant relation

p(dn/dp') ~0 for P, (10)
Since p' = p, this means
n~p-¢, €>0, for p--o.

Eg. (10) holds for all partial waves. For small n
we have exp (2in) - 1 =~ 2in. Thus, if we make the
simplifying assumption, that ¢ is the same for all
partial waves, we obtain for the asymptotic energy
dependence of the elastic cross section gg] in the
case of conformal invariant interactions

o ~E-2(14€) | >0, for E-~«, (11)

with E= Ey = E9 ~P.

Since at very high energies the inelastic reac-
tions dominate, our considerations are certainly
somewhat too simple, but they show that the rela-
tions (7) and (8) imply immediate physical conse-
quences, which may be checked by experiment.

Among others the following interactions L(x) are
invariant under the transformations (1) and (2)

TypA,, F¥ve, o, (12)

whereas, for example, the interactions

P10102T305%4, DY o e (13)
are not invariant (O; means any element of the Dirac
algebra) Invariance here means, that the quantity
L(x)d4x is invariant, which is sufficient in the La-
grangian formalism.

The infinitesimal transformations of the

(Lorentz-) scalar ¢(x), the vector A (x) and the
spinor ¥(x) are the following (6« = u'(x') - u(x))

b =-Q‘P(x): |~Ci|<<1, p:ea,
bp =-2cxpfx), Jlek| <1 5);
GAP' = - Au(x) > ( )
6Ay =-2c-x Ayx) - 2(xV ey - xy cV) Ay(x) 3)
&y -3 o),
8 = (-2cx - cpy ay v V) Blx) B,
where the y# are Dirac matrices.
The prescription for finding these transforma-
tion laws follows from the interpretation of (1) and
(2): First introduce the units of length, velocity
and action! I then any spinor or tensor A has the
dimensions of (lengthy?, it has to be transformed
under (1) as A~ p"A. As for (2), build a Lorentz
invariant / of A and if this invariant has the dimen-
sion of (length)” it has to be transformed as I~
o~™(x) . For instance, the d1mens1on of length of

Py is (L‘3) Therefore § ~ oS §p.
From

o(x)=1-2c-x + c2 x2
= (1= ¢ % YA ¥ (1 - ¢ %, v ¥Y)
if then follows that
P'xt) =o(x) (1 - ¢ xy yH¥Y) ¥(x) ,

which for |[cH| <« 1 is identical with the second line
in (186).

(14)

(16)
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Since in ordinary quantum field theory the limit
E - « always leads to troublesome divergences,
conformal invariance may also be of theoretical
interest in this connection, particularly because the
mathematical framework of the inhomogeneous Lo-
rentz group has to be extended essentially, if one
deals with the conformal group 1).

I arn grateful to Professor F. Bopp for stimu-
lating discussions and his kind interest in this work.

I also thank M. Rinke for discussions and a critieal
reading of the manuseript.
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In a recent paper 1) Ching-Sheng Wu has pointed
out and corrected some errors contained in a paper
by the present writer 2),

As the latter author himself in other papers has
done the calculations concerned correctly 3,4)
based, however, on another physical point of view
than that advocated by Ching-Sheng Wu, some clear-
ifying comments seem worth while in order to high-
light the underlying ideas.

In the paper under discussion the Landau damp-
ing was calculated from the point of view of energy
absorption of resonant particles and the correct
expression for the damping was found except for a
factor 3 *. '

To calculate the absorbed energy Apeg the inte-
gral o

= - efooEvfl(x,v,t) dv (1)

- 00

was used.

The notation is: E = Eq exp i(kx - w'f), the elec-
tric wave field, 2 = wave number, w' = w - iy is
the complex frequency, fi is the perturbation of the
distribution function fo(v), v = velocity of the elec-
trons along the x-direction and - ¢ is the charge of
an electron. The bar indicates mean value in space,
i.e., over one wavelength.

The electric wave field E is assumed unknown a
pricri and the damping vy is introduced as an auxil-

* What concerns the error in sign, there is agreement
between C.S.Wu and the present author 3,4).
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iary quantity, being useful when applying a normal
mode analysis to the present problem.

When E is inserted into the Vlasov equation, an
expression forth e perturbation fj is derived. The
real part of the latter is then introduced into (1)
together with the real part of E. A is then calcu-
lated in the limit y = 0 and an expression for A in-
dependent of y is found . Or, 4 is derived to
zeroth order in vy.

This means that the derived absorption is solely
due to resonance and is the contribution to A in
which we are interested. From a physical point of
view it is also reasonable that the resonance ab-
sorption should be independent of y in the limit
y/w =~ 0. In that case we can write A = Apes.

As a consequence of this non~zero absorption
there cannot exist in the plasma an intrinsic neu-
tral wave, since in this case the resonant energy
must be taken from the wave itself.

Now, what is meant by taking energy from the
wave? Two points of view may be set forth, and
here lies the difference (or synthesis) of the two
ways of correcting the error already mentioned,
the lack of ;. One can argue as follows.

a. Due to the resonant energy absorption the
averaged electric field energy density We] = E4/yn
is damped and thus also the electric field E. This
damping leads in turn to a damping of the pertur-
bation speed of all the particles of the main plas-
ma. Consequently the averaged kinetic energy den-
sity Wkijn of the main plasma, as distinguished

+ A may depend on , but only through E.



