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Abstract: It is shown that the free non-relativistic motion is invariant not only under
the 10-parameter Galilei group but also under the larger 15-parameter Liouville
group, which is isomorphic to the group O(2,4). In addition, there is the usual
invariance under time translations and special Galilei transformations. The con-
served quantities associated with the new symmetries are given explicitly. Fur-
ther, it is shown in the case of spin zero that there is a close connection between
the unitary representations of the Louiville group and the physical projective rep~
resentations of the Galilei group.

Finally, the consequences of the new conservation laws for interactions, in
particular for elastic scattering, are discussed, and it is shown that they impose
a vanishing time delay during the interaction, This means that the new exact in-
variances of the free non-relativistic particles in general can only be approximate
or limiting symmetries for interacting systems.

I. INTRODUCTION

The 10-parameter Galilei group G is generally considered to be the
non-relativistic analogue of the relativistic Poincaré group ?1g. The proper
Galilei group consists of the space translations T3(a), the time translations
Tl(T), the rotations Rq(w) and the special Galilei transformations Gg(b).
The indices are to indicate the number of independent parameters. The
proper Galilei group induces the following well-known infinitesimal trans-
formations of the space and time coordinates x and ¢:

Tg(a): x—-x + a, -t (1a)
Tl(T) P XX, t—t+T, (1b)
Rg(w) : xl-xly wikxk, wik = —wki, i,k =1,2,3, (1c)
Gg(b): x » x + bt, t—t (1d)

Every closed non-relativistic system is expected to be invariant under
these transformations. The invariance yields the usual ten conservation
laws for closed systems.

The situation seems to be rather uncomplicated as far as the classical
non-relativistic systems are concerned. In a naive approach one would ex-
pect the unitary faithful representations of the Galilei group to provide the
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appropriate spaces for quantum mechanical physical systems. However,
this has been shown [1] not to be the case. Rather, only the faithful repre-
sentations of a certain central extension of the Galilei group are the physi-
cally interesting ones [2, 3].

This is a somewhat unusual situation, although several arguments can
be given in order to explain it. The present paper gives - to some extent -
an additional explanation for these unconventional properties of the Galilei
group in quantum mechanics. The starting point for the following approach
has been this:

If one asks for the geometrical gauge transformations of the Minkowski
space, namely those transformations of the coordinates x% i=0,1,2,3,
which induce a multiplication of the line element ds2 = (dx0)2 - (dx1)2
- (dx2)2 - (ax3)2 by a factor, one ends up [4] with - besides the full Poin-
caré group - the dilatations

Dy(a): xi-e%x? i=0,1,2,3, (2a)
the special conformal transformations
SC4(c): x%—=RT4(0)Rx% i=0,1,2,3, (2b)
where
T4(c)xi =xl+ ci, R+’ = -xi/x2

and in particular the discrete length inversion R which in combination with
the translations generates the group SCy(c).

In the future 1 shall call the group SC4 the "special Liouville group of
the Minkowski space", because Liouville was the first one [5] to show the
conformal transformations of the three-dimensional space to form a group
with a finite number of parameters, contrary to two dimensions where all
holomorphic functions provide conformal mappings. In addition I shall call
the full 15-parameter conformal group, consisting of the full Poincaré
group, the dilatations and the special Liouville group [6] the "full Liouville
group (15 of the Minkowski space".

For many years the spacial part of the group (2b), characterized by the
parameters (cl, 2, ¢3), has been interpreted [7] as a transformation of a
physical system at rest to a uniformly accelerated system ("hyperbolic
motion"). This has been criticized by the author [4, 8, 9] for several rea-
sons:

(i) In egs. (2b) the transformations R and SC4 are not well defined in
x-space, because, for instance, the light cone %2 = 0 has no well-defined
image with respect to R. It is therefore not conceivable that these trans-
formations can be given a well-defined meaning in x-space.

A one-to-one mapping can be obtained by introducing the homogeneous
coordinates x% = n%/x, where n¢ denotes the position of a given physical
point in space-time and « characterizes the inverse Poincaré invariant unil
of length employed at this point. On this new manifold, which has a simple
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and natural physical interpretation [4], the length inversion R leaves the
position of a point invariant but changes the quantity x by a different factor
at different points. Thus, the transformation R is obviously a geometrical
gauge transformation. Since the special Liouville group is composed of two
discrete gauge transformations and a translation, it is hard to understand
why it should describe hyperbolic motions.

(ii) In any continuous unitary representation of the proper orthochronous
Liouville group in which the integrated commutation relations

etaD Py e-taD _ o-@ Py, ot@D p2 -taD _ -2a p2

between the self-adjoint generator D of the dilatations, the energy operator
P, and the mass operator P2 nold, the spectra of Py and P2 are either con-
tinuous or vanish [10]. The crucial point now is this: invariance under trans-
lations and the special Liouville group implies invariance under dilatations
(4,11]. In the case of non-vanishing rest masses this means that uniformly
accelerated systems would have continuous rest masses and continuous
energy spectra. However, there is no experimental evidence that the dis-
crete energy spectra of atoms or the rest masses of elementary particles
become continuous under uniform accelerations.

On the other hand, gauge transformations of different types have been
very useful as approximate symmetries in the very high energy region when
rest masses become negligible [4,9,12]. The interpretation of the special
Liouville group as a geometrical position dependent gauge transformation
does not run into so many epistomenological difficulties as the "accelera-
tion" interpretation does.

{iii) The wave packets formed by superpositions of eigenfunctions of the
generators KJ of the infinitesimal special Liouville transformations de-
scribe certain motions in space-time, analogous to the usual wave packets
formed by plane waves. The group velocity of these new wave packets is a
constant [8], smaller than the velocity of light or equal to it, whereas the
phase velocity can be larger than the velocity of light and describes hyper-
bolic motions. Since we know from quantum mechanics that the group ve-
locity, not the phase velocity, of wave packets corresponds to the motion of
particles, the "acceleration"-interpretation is again in trouble, but the
"gauge"-interpretation is not!

Now, if it is true that - according to our "gauge"-interpretation - the
mass "gap" in the relation E = ¢(p2+ c2m2)3 is the reason why the rela-
tivistic Liouville group is only an approximate symmetry group and that any
similarity to uniform accelerations is irrelevant and accidental, then the
Liouville group should become important for any free elementary excitation
without an energy gap in its dispersion law E = E(p) for ipI — 0, for instance
if £ =A|p|®, where A and o are constants.

In particular, this should be true for the free non-relativistic particle
where E = (1/2m) p2. We shall show in the following sections that this is
indeed the case. The non-relativistic free motion characterized by X = 0
has the full 15-parameter Liouville group [isomorphic to the group O(2,4)]
as an exact symn:s .ty group: This can immediately be seen from the corre-
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spondence x — x, x° = ¢t - 9% = v¢, v = p/m. In addition, it is invariant
under the special Galilei group Gg(b) and the time translations T{(7). How-
ever we have g = v-1pg and E = vp©, where £ is the conserved "Galilei"-
momentum associated with Galilei invariance, n is the conserved "Lorentz™
momentum associated with the special "Lorentz"-transformations contained
in the group 0(2,4), and p° is the conserved quantity associated with the
"yO"_translations y° - yO +7.

Suppose now it is possible to give a quantum mechanical description of a
free non-relativistical particle by means of a certain faithful unitary rep-
resentation of the group O(2,4). Looking at the classical situation one is in-
clined to expect that the generators Gk, k=1,2,3, and H of the special
Galilei group and the time translations are contained in the enveloping alge-
bra of the Lie-algebra of the O(2,4) according to the relations GR=mp-1p0k
and H = (Zm)‘lPPO. This is indeed the case for particles with vanishing
spin, but only for the physical projective representations of the Galilei
group, not for the unphysical faithful ones.! Thus, starting with the gauge
properties of a free non-relativistic classical particle, we arrive at those
"unusual" but physical representations of the Galilei group in a straight-
forward way. The case of non-vanishing spin is more complicated, how-
ever.

The paper is organized as follows: In sect. 2 we give the infinitesimal
coordinate transformations induced by the orthochronous proper 15-param-
eter Liouville group. In sect. 3 the constants of motion associated with
these transformations are listed. Sect. 4 contains the finite continuous and
sect. 5 the discrete transformations. The stationary case v = 0 is discussed
in sect. 6. Sect. 7 contains some remarks on the relation between unitary
representations of the Liouville group and the projective unitary represen-
tations of the Galilei group. The problem of the invariance or non-invari-
ance of interactions under dilatations is treated in sect. 8.

2. INFINITESIMAL TRANSFORMATIONS OF THE COORDINATES

We consider a free non-relativistic particle with the kinetic energy
E = (1/2m) p2. 1ts velocity is v = dE/ap = p/m= dx/dt. We define y0 = vt
and call the set of points ¥ = (v9, x) with the metric (v,y) = (yo)2 - x2 the
"Galilei space". In the following we consider only infinitesimal transfor-
mations and assume v # 0, The case v = 0 will be discussed in a later sec-
tion.

First we rewrite the transformations (1a)-(1d) for the coordinates v.
We have

Ta(a): % —y°, v -, (3a)
Ty(1): 3% -9 +o7, v -, (3b)
Ra(w): 90 =190, v, (3c)
Gg(b): xox 40 1by0, 3940 1 972 v byO

vov+vlves, (3d)
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In addition to the time translations T;(7) we define the y°-translations
T{F): x-x, 0 = 3047, t—>l+z,"1‘7", v -, (3e)
The "special Lorentz"-transformations of the Galilei space are given by
Ng(u): x - x -uy°, PO -390y x|
t-—*t—z"lu-x, v, (31)

We now come to those transformations of the Galilei space which corre-
spond to the groups (2a) and (2h). We get:

Dy(@): x-x+ax, y°-3%+a)°,
v v-ar, t -1+ 2alf. (3g)
SCyle) 1 x—-x+(x2-(y9%c-2(c-x)x,

y0 = y0-2(c-x)y°,
b=t -4(c-x)t+2(cv)t2,
v—->v+2(c-x)v—2(c~v)tzv. (3h)

x—x+2c%tx,
YO = 304304 2c0(y0)2 - cO((y9)2 - x2) ,
t - b+ cOvt2 e 1x2
(AN (31)

The transformations (3a)-(3i), except for (3b) and (3d), are the infinite-
simal transformations of the 15-parameter orthochronous proper Liouville
group of the Galilei space. The group itself is isomorphic to the group [4]
50(2,4).

3. THE CONSERVED QUANTITIES
The transformations (3a)-(3i) leave the action integral,
1 2
[ ar 5o (dx/dh?,
of a free particle invariant (in some cases there remains an additional in-
tegral of a total differential, which does not change the conclusions). Ac-

cording to the well-known theorems [13] of Noether this implies the follow-
ing conserved quantities:
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Ts(a): Momentum p, (4a)
Tl('r) : Energy E = zl—m pz , (4b)
R3(w) : Angular momentum m = x X p, (4c)
Gg(b): Galilei momentum g = mx - pt, (44d)
T41(7) : Modulus of momentum p° = +(p2)%, (4e)
Ng(u): Lorentz momentum n = xp° - vip, (4f)
Dl(a) : Dilatation momentum s = 2Ef - x-p |, (4g)

8Cy(c) : Bessel-Hagen momentum h = 2xs - (vzt2 —xz)p,
modulus of the Bessel-Hagen molmentum
7O = 2uts ~ (0212 - x2)pO = +(h23, (4h)

We notice [4] the following relations:
hAxp =2sm, p°h-1°p=2sn, KO -h.p =2s2. (5)

The relations (5) determine the quantities rm, n and s in terms of the
two vectors p and h, except for a relative sign.
In addition we have

g'_'v-ln: U=P0/m’ (6)

E =3vp0. (7

Thus, all the known conserved quantities of a free non-relativistic particle
can be generated by p and f!

It should be mentioned that the mass m is an invariant under the full
non-relativistic Liouville group. This is not so in the relativistic case [4].

4, DISCRETE TRANSFORMATIONS

Under space reflections P and time reversal T the quantities s, h and
1° transform as follows:

P: s-s, h--n, 0 -no,

T: s--s, h--h, 1 >,

)

The property that p and h are invariant under the product PT, but m, n
and s change sign, is, of course, closely related to the fact that m, n and
s are determined by A and p only up to a sign.

In addition to P and T we have the discrete "length inversion” {4,9] R
with the properties:

R: m>m, n~n, s>-s, p~h, pP°-h°, h~p, 1°-p° (8)

The mass m is invariant under R.
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In the Galilei space R has the form [14]
y0 - 90 =t = vt/(,\r2 -vztz) , v'=p/m=h%m,

X X' = x/(x2%-022), -(9)

The fact [4] that the translations Tg(a) and Ty(7), the time inversion T,
and the length inversion R generate the full 15-parameter Liouville group
underlines the importance of the discrete group R.

5. THE FINITE TRANSFCRMATIONS

It was already stressed in the introduction - and discussed in detail in
refs. [4, 9] - that the finite transformations SC4(c) and R cannot be defined
satisfactorily in the Minkowski or Galilei space. One has to introduce
homogeneous coordinates y© =n%/k, x*=nt/k, i =1,2,3, where k is a
Poincaré invariant unit of length and 7 = (°,%) characterizes the position.
If we define the spurious coordinate A by «x = (7]0)2 —172 then R appears to be
the discrete gauge transformationn —»n, ¥ = -A, A — -«k. Thus, the inter-
pretation and the formalism is exactly the same as in refs. [4, 9], and we
shall not repeat them here.

6. THE CASEv =0

If v = 0 then ¥© = 0. In this case the proper 15-parameter Liouville group
degenerates into the proper 10-parameter Liouville group of the three-di-
mensional Euklidean space with coordinates x. It is isomorphic to the group
SO(1,4). Thus the Euclidean group (Rg plus T3g), combined with the gauge
groups Dy and SC3 of the Euclidean space, yield the group SO(1,4). Its
physical interpretation is the same as that of the group SO(2,4) in the Galilei
or Minkowski space.

As the Galilei group changes the velocity v, it cannot be incorporated
into the framework of the Liouville group of the Euclidean space.

In order to illustrate the physical significance of the dilatations and the
special Liouville group SC3(c) in the case y° = 0, i.e. for either v = 0 or
t = 0 (stationary systems!), we shall discuss some details now.

The 10-parameter proper Liouville group of the three-dimensional
Euclidean space is given by

Tg(a) : x'—xi+al, i=1,2,8, (10a)
Rg(7) : ¥t o rikxk, vk ik _ Gil, (10b)
Dy(a): x'—e¥x?, (10c)

. . 1 . . 2
R SN R S S
SCs(c) : % RT4(c)Rx ) (x*+ ctx%),

in :xi/xz

o(x)=1+2c-x + c2x2, (10d)



552 H.A.KASTRUP

Eq. (10d) shows that the special Liouville group is isomorphic to the trans-
lations.

Since we are dealing with non-linear transformations, we have to define
distances by the differential form ds? = dyfdx’. Because of ds2 — (1,/cr(x))2ds2
in the case of SCg(c) we interpret the special Liouville group as a group
which induces position dependent ("local") geometrical gauge transforma-
tions in the sense that a given length ds at a point x is mapped onto another
one which differs from the first one by the position dependent factor 1/o(x).

All this becomes more transparent if we introduce the unit of length
which is being employed at each point explicitly. The introduction of these
new coordinates is necessary anyhow, because one cannot have a one-to-one
mapping in x-space as far as the groups SCg(c) and R are concerned. For
instance, the point x = 0 has no image in x-space with respect to the map-
ping R.

We define a Euclidean invariant unit of length « by the equations

xl=nik, i=1,23. (11)

The numbers n* characterize the location in space and the quantity « the
unit of length employed at this location (note that (n?,«) and g(n%,«), 8 #0
and constant, are equivalent. They correspond to the same location.).

In addition we define a spurious coordinate A by the equation

AK :nini. (12)

The groups Tg(a), R3(r), D{(a) and R induce the following transformations
in the space of these new coordinates:

Ty(a): nl—ni+ale, i=1,2,3,

K=K,

by —‘~>\+2aini+a2k, (13a)
Rg(r) : ni - Viknk, K= K, A=A (13b)
Dy(@): nt —nt, k> e ¥k a—el¥n, (13¢)
R : nt-ont, K = X, XK. (134)

The transformations induced by the group SCg(c) can be constructed from
(13a) and (13d), because its elements are given by RT3(c)R.

The gauge character of R is evident from eq. (13d): The position, charac-
terized by n?, stays the same but the unit of length is changed.

The above transformations leave the form xx-n?n? unchanged. This
means that the 10-parameter proper Liouville group of the Euclidean space
is isomorphic to the "orthochronous proper Lorentz" group SO(1,4) in five
dimensions (put « = mP-nd, =P+,

The length element ds in terms of the new coordinates is given by

ds2 :iz- (dnf dn - dk dy) = 0.
K
This form is positive definite because of the subsidiary condition
2ntdn? - x dk - k dx = 0 which follows from eq. (12).
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The full Liouville group of the three-dimensional Euclidean space con-
sists of two pieces, which are mapped onto each other either by the space
reflection P or by the length inversion R, but the full group O(1,4) consists
of four pieces, characterized by the sign of the determinant of the transfor-
matlon matrix (the sign is -1 for P and R) and the sign of the coefficient
b2 Y5 of 75 (+1 for P and R). ‘However, because the relation (11) is not changed
if we reverse the sign of n? n4 and 7° , the piece (det = -1, sign B2 25 = ~1) of
the group O(1,4) is mapped onto the same piece of the full Llouv111e group

as the piece (det = +1, sign 3] ’5 = +1). In the same manner the pieces
(det = -1, sign b55 = +1) and (det = +1, sign b5.5 = -1) are mapped onto the
second piece of the full Liouville group.

The description of physical quantities in terms of tensors and spinors of
the group SO(1,4) is analogous to the relativistic case [4] and will not be
treated here.

7. UNITARY REPRESENTATIONS IN THE CASE OF VANISHING SPIN

We have seen in sects. 2 and 3 that the motion of a free non-relativistic
particle is invariant under the 15-parameter Liouville group. In addition
we have invariance under time translations and Galilei transformations.
The conserved quantities E and g associated with these latter groups can
be expressed in terms of the conserved quantities associated with the Liou-
ville group.

We now turn - very tentatively - to a few problems associated with uni-
tary representations of the Liouville group and ask for their relations to
the unitary representations of the 10-parameter Galilei group mentioned in
the introduction. For simplicity we consider only the case with vanishing
spin. The case of non-vanishing spin is definitely more complicated and not
a trivial generalization of the one to be discussed here.

We start with a unitary representation of the proper 15-parameter Liou-
ville group in the Hilbert space of functions ¢(p) of the momenta p,
pO = +(p2)%, with the scalar product

d3p *
_(4p . 14
(91, ©3) fzpo 01(p) ©3(p) (14)

The representation we are going to consider contains a representation of
the "Pomcare group with spin zero and vanishing "rest mass", i.e.

(p9)2 - p2 = 0. The Hermitian generators of the infinitesimal transforma-
tions of the 15-parameter L1ouv111e group are denoted as follows: .
Tg(a): Pt =-P;, T1(9):P% =Py, Ry(w): M, i, k=1,23, Ng(u): MO,
1=1,2,3, Dy(a): D, SCy(c): Kl KO. In the space of functlons we are con-
sidering, these generators have the form [10]:

0 =0, Pi=pi, (15a)

MHY = (pH ap -pY),  w,v=0,1,2,3 (15b)

3!’
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D=i(p¥ —+1), (15¢)

b _og 0 v 3 3 83 _
K" =-2 apﬂ—zp 27 apu + apVﬁiF:/’ L =0,1,23, (15d)
In the following we shall not need the explicit expressions for D and KX,

In sect. 3 we had the relations E = (p/2m) p° and g = (m/p)n. In a rep-
resentation these classical conserved quantities correspond to the genera-
tors of the infinitesimal transformations. If Hand GJ, j =1,2,3, are the
generators of the time translations and the Galilei transformations, we
therefore try

pramp© -2 m (16)
= 2m ’
GJ = (m/p)MO

il O My 9

=it (m ; + 5 b apo)' (17

If we put 3(E,p) = o(p°, p), we have 8<p/ap° = (p°/m) 9/ 9E, i.e. with re-
spect to the functions & the generator G7 has the form

Gi=ilm Dy pl . (18)

ap]
This is exactly the form the generators of the Galilei transformations have
in the "physical" representatlon [3] for spin zero and mass m. The "Lorentz"
invariant measure d2 ds3 dpoa(p°) 6(152 —pz) has to be replaced by
(2p/m) dQ, = d3p dES E - (p2/2m)} and we have

(Bq,P9) = [d3pdE8(E - 22 FLD) by .
2m

It is very interesting that by starting from the classical conserved quanti-
ties of the free non-relativistic particle, we arrive immediately at a "physi-
cal” representation of the Galilei group, not at an "unphysical” faithful one!
This is a neat future which may help to explain the "strange" situation as
far as the physical significance of the different types of unitary represen-
tations of the Galilei group are concerned.

8. INTERACTIONS

The symmetry group O(2,4) of the free non-relativistic particle is gen-
erally broken if interactions are taken into account. We shall discuss this
symmetry breaking for unitary representations systematically in a second
paper {15]. In this section we shall deal with some features pertaining to
the classical case:

(i} Consider the Hamilton function H = %pz + V{x) of a particle in a po-
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tential V(x). The time derivative ds/df of the dilatation momentum
s=2Fl-r-p is given by

% = 2V(x) + x-grad V(x).

This means that the quantity s is a constant of motion only if the potential
V(x) either vanishes identically or is homogeneous of degree -2. A rota-
tionally invariant potential of this type is V = -A/ x2, This potential modi-
fies the centrifugal potential. By using explicit expressions [16] for x = x(?)
and p(?) one can verify that the dilatation momentum is indeed a constant of
motion for this potential.

(ii) In order to illustrate the reason why most of the non-relativistic sys-
tems with interactions are not invariant even under dilatations, we consider
a particle with mass m in the gravitational field of a particle with mass M,
The Hamilton function is H = (1/2m) p2 - G(mM/v) = E, v = |x| Since the
fixed masses m and M are considered to be invariant under the dilatations
x - e? x, the time ¢ has to transform as f — e2® ¢ in order to make the kinet-
ic term of the action integral invariant. But then the interaction term of the
action integral is not invariant under dilatations for the following reasons:

It is natural to use the units length, mass and action in non-relativistic sys-
tems. In the framework of these units the gravitational constant G has the
dimension (length)-1(mass)-3(action)2. Since G is a fixed constant for the
system under consideration, it does not change under dilatations!

The deeper reason for the non-invariance under dilatations is, there-
fore, that the coupling constant G contains a fixed length with respect to the
motion of the two particles of the system. A theory about the physical origin
of such a fixed length would probably shed new light on the breaking of dila-
tation invariance (whether it is of cosmic or atomic origin, for instance:).

On the other hand it is of great importance that - contrary to the non-
relativistic situation - many important relativistic systems like quantum
electrodynamics, etc., have Liouville invariant interaction Lagrangeans
[4,17]. For these systems the symmetry is broken by the kinetic mass
terms.

(iii) The non-invariance of many non-relativistic action integrals under
dilatations does not mean that the corresponding equations of motion are
not invariant. If we have

m alx
ds2

and if V(x) is homogeneous of degree g, then the equation of motion (19)
is invariant under dilatations x — e® x, if the time ¢ transforms as
t — e®(1-38) £, This invariance may be quite useful [16], but it does not
lead to new conservation laws.

(iv) The dilatation momentum s = 2Ef - r- p is of interest even if it is
not conserved: If the potential V is homogeneous of degree 3, then the time
derivative of s is

= -grad V(x), (19)

ds _

E.zE-G.lit(,\(-p)=(2+B)V(x). (20)
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If the system is such that the quantity |x - p| is bounded from above, we
can calculate the time average of eq. (20). With the definition

;T
F=lm — [ F@)as,
T—o o

we get ds/df = 2F = (2+8) V(x), or

V) = g,

Eq. (21) is the well-known virial theorem [18].

(v) As the dilatation momentum s and the Bessel-Hagen momenta b and
70 are not familiar to many physicists, it seems to be worthwhile to illus-
trate their intuitive meaning. In order to do this, we consider the non-rela-
tivistic elastic scattering of two particles of the same mass m, assuming
merely the conservation laws associated with the 10-parameter Galilei
group, the dilatations, and the special Liouville group. The existence of a
Hamilton function is not required. The following discussion is analogous to
that of the extreme relativistic case of ref. [4].

We assume the asymptotic motions of the two particles at £ — -« and
t — + o can be characterized by the free motions

(pl./m)t+az~, i=1,2, - -0, (22a)

(21)

1]

X3

[

X} (pz.'/m)t+azf, i=1,2, t— 4o, (22b)

i
Before the scattering we have in the c.m. system p{ = p= -ps,
X1 + x2 = X =const. We choose X =0 and have a1 = a = -a9. Because of
the interaction the quantities p;, ¢ = 1,2, and aj, 7 = 1,2, are in general
different from p; and a;. We consider now the constraints imposed by the
conservation laws mentioned above:
Momentum conservation gives p{ = p' = -p5. From energy conserva-
tion we have Eq + Eg = 2E = E] + E5. Conservation of the total Galilei mo-
mentum g1 + g9 yields ai = a' = -a3. Angular momentum conservation

gives

i

my +mg =2axp =mji +my=2a'xp'. (23)

From this it follows that @ siny = @' siny', where y and y' are the angles
between a and p and &' and p' respectively.

Angular momentum conservation means that the "vertical distance" of
the asymptotic straight lines of motion from the origin - the impact param-
eter - is the same before and after the scattering. It does not say anything
about the "parallel” distance a cosy. In general we shall have a cosy #

# a' cosy', because the interaction slows down or accelerates the particles
in the interaction region (positive or negative time delay).

The new feature now is that the conservation of the total dilatation mo-
mentum s1 + s9 forbids such a time delay. For we have

S1+Sg=-2a-p=s{+sy=-2a-p', (24)
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or ¢ cosy = a' cosy'. Combined with eq. (23) this implies a' = @ and
Y =7y,

The above result means that in an elastic scattering which conserves not
only the usual ten quantities but also the total dilatation momentum, the
vector & can only be rotated, the angle of rotation being the scattering angle.
Therefore, the cross section can depend only on the scattering angle in a
non-trivial way, its energy dependence is determined because a' depends
only on the scattering angle. This is, of course, a severe restriction, and
we expect the conservation of the total dilatation momentum only in limiting
or approximate cases.

Finally, it turns out that the conservation of the total Bessel-Hagen mo-
menta i1 +hg and ]Z? + hg is fulfilled automatically in elastic scattering, if
the sum of the dilatation momenta is conserved.

(vi) It has already been mentioned[14]that the quantities discussed in
sect. 3 are conserved for any elementary excitation with a dispersion law
E=Ap?. Such excitations play an important role in low-temperature solid-
state physics (phonons, magnons ete.). If the interaction between two such
elementary excitations is approximately dilatation invariant, the cross sec-
tion for an elastic scattering of such excitations off each other will have the
approximate form [4]do/dQ = E-2 A(6), where E is the c.m. energy and A de-
pends only on the scattering angle 6. If £ — 0 for T(temperature) — 0, then
the cross section diverges. In a very intuitive sense this means that long-
range correlations become important. Something like this seems to happen
for many-particle systems at vanishing absolute temperatures.

However, we want to emphasize that these remarks are mere specula-
tions and that a more detailed analysis is certainly necessary before one
can say more about the importance of dilatations and the special Liouville
group for low-temperature physics.

Part of the present work was done during a stay at the University of
Bern during the winter 1966,/1967. I am very much indebted to Professor
A. Mercier and Professor H. Leutwyler for their invitation to come to Bern
and for their very kind hospitality.
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