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Abstract
The theoretical interest in the longitudinal diffractive structure function F D

L is
briefly motivated and possible measurement methods are surveyed. A simula-
tion based on realistic scenarios with a reduced proton beam energy at HERA-
II using the H1 apparatus shows that measurements are possible with up to 4σ
significance, limited by systematic errors.

1 Introduction
In order to understand inclusive diffraction fully, it is necessary to separate out the contributions from
transversely and longitudinally polarised exchange photons. Here, the formalism of [1] is adopted, where
by analogy with inclusive scattering and neglecting weak interactions, a reduced cross section σDr is
defined,1 related to the experimentally measured cross section by

d3σep→eXY

dxIP dβ dQ2
=

2πα2

β Q4
· Y+ · σDr (xIP , β,Q

2) , where σDr = FD2 −
y2

Y+
FDL (1)

and Y+ = 1 + (1 − y)2. The structure function FD
L , is closely related to the longitudinal photon con-

tribution, whereas the more familiar FD
2 contains information on the sum of transverse and longitudinal

photon contributions.

It is generally understood [2] that at high β and low-to-moderate Q2, σDr receives a significant, per-
haps dominant, higher twist contribution due to longitudinally polarised photons. Definite predictions [3]
exist for this contribution, obtained by assuming 2-gluon exchange, with a similar phenomenology to that
successfully applied to vector meson cross sections at HERA. The dominant role played by gluons in the
diffractive parton densities [1] implies that the leading twist F D

L must also be relatively large. Assuming
the validity of QCD hard scattering collinear factorisation [4], this gluon dominance results in a leading
twist FDL which is approximately proportional to the diffractive gluon density. A measurement of F D

L

to even modest precision would provide a very powerful independent tool to verify our understanding
of the underlying dynamics and to test the gluon density extracted indirectly in QCD fits from the scal-
ing violations of FD2 . This is particularly important at the lowest x values, where direct information on
the gluon density cannot be obtained from jet or D∗ data due to kinematic limitations and where novel
effects such as parton saturation or non-DGLAP dynamics are most likely to become important.

Several different methods have been proposed to extract information on F D
L . It is possible in

principle to follow the procedure adopted by H1 in the inclusive case [5, 6], exploiting the decrease in
σDr at large y relative to expectations for FD

2 alone (see equation 1). This method may yield significant
results if sufficient precision and y range can be achieved [7], though assumptions are required on the xIP
dependence of FD2 , which is currently not well constrained by theory. An alternative method, exploiting
the azimuthal decorrelation between the proton and electron scattering planes caused by interference
between the transverse and longitudinal photon contributions [8], has already been used with the scattered
proton measured in the ZEUS LPS [9]. However, due to the relatively poor statistical precision achievable
with Roman pots at HERA-I, the current results are consistent with zero. If the potential of the H1 VFPS
is fully realised, this method may yet yield significant results in the HERA-II data [10]. However, if

1It is assumed here that all results are integrated over t. The superscript (3) usually included for FD(3)
2 and other quantities

is dropped for convenience.



the necessary data are taken, the most promising possibility is to extract F D
L by comparing data at the

same Q2, β and xIP , but from different centre of mass energies
√
s and hence from different y values.

The longitudinal structure function can then be extracted directly and model-independently from the
measured data using equation 1. In this contribution, one possible scenario is investigated, based on
modified beam energies and luminosities which are currently under discussion as a possible part of the
HERA-II programme.

2 Simulated FDL Measurement
Given the need to obtain a large integrated luminosity at the highest possible beam energy for the re-
mainder of the HERA programme and the fixed end-point in mid 2007, it is likely that only a relatively
small amount of data can be taken with reduced beam energies. A possible scenario is investigated here
in which 10 pb−1 are taken at just one reduced proton beam energy of Ep = 400 GeV, the electron
beam energy being unchanged at 27.5 GeV. Since the maximum achievable instantaneous luminosity at
HERA scales like the proton beam energy squared [11], this data sample could be obtained in around 2-3
months at the current level of HERA performance. It is assumed that a larger data volume of 100 pb−1 is
available at Ep = 920 GeV, which allows for downscaling of high rate low Q2 inclusive triggers.2 The
results presented here can be used to infer those from other scenarios given that the statistical uncertainty
scales like σD 400

r /
√L400 + σD 920

r /
√L920, where σDEp

r and LEp are the reduced cross section and the
luminosity at a proton beam energy of Ep, respectively.

The longitudinal structure function can be extracted from the data at the two beam energies using

FDL =
Y 400

+ Y 920
+

y2
400Y

920
+ − y2

920Y
400

+

(
σD 920
r − σD 400

r

)
, (2)

where yEp and Y Ep
+ denote y and Y+ at a beam energy Ep. It is clear from equation 2 that the best

sensitivity to FDL requires the maximum difference between the reduced cross sections at the two beam
energies, which (equation 1) implies the maximum possible y atEp = 400 GeV. By measuring scattered
electrons with energies E ′e as low as 3 GeV [5], the H1 collaboration has obtained data at y = 0.9. This is
possible with the use of the SPACAL calorimeter in combination with a measurement of the electron track
in either the backward silicon tracker (BST) or the central jet chamber (CJC). For HERA-II running, the
corresponding available range of scattered electron polar angle is 155◦ < θ′e < 173◦, which is used in the
current study.3 Three intervals in y are considered, corresponding atEp = 400 GeV to 0.5 < y400 < 0.7,
0.7 < y400 < 0.8 and 0.8 < y400 < 0.9. It is ensured that identical ranges in β, xIP and Q2 are studied
at Ep = 920 GeV by choosing the bin edges such that y920 = y400 · 400/920. Since the highest
possible precision is required in this measurement, the restriction xIP < 0.02 is imposed, which leads
to negligible acceptance losses with a typical cut on the forwardmost extent of the diffractive system
ηmax < 3.3. The kinematic restrictions on E ′e, θ

′
e and xIP lead to almost no change in the mean Q2, M2

X

or β ' Q2/(Q2 +M2
X

) as either y or Ep are varied. In contrast, xIP = Q2/(s y β) varies approximately
as 1/y. As is shown in Fig. 1, at the average β = 0.23, there is at least partial acceptance for all y bins
in the range 7 < Q2 < 30 GeV2, which is chosen for this study, leading to an average value of Q2 close
to 12 GeV2.

The simulation is performed using the RAPGAP [13] Monte Carlo generator to extract the number
of events per unit luminosity in each bin at each centre of mass energy. The values of F D

2 and FDL , and
hence σD 920

r and σD 400
r are obtained using an updated version of the preliminary H1 2002 NLO QCD

fit [1].
2Alternative scenarios in which a smaller data volume at large Ep is taken in a short, dedicated run, could potentially lead

to better controlled systematics at the expense of increased statistical errors.
3One interesting alternative running scenario [12] is to obtain data at Ep = 920 GeV with the vertex shifted by 20 cm in

the outgoing proton direction, which would allow measurements up to θ′e = 175◦ , giving a low Q2 acceptance range which
closely matches that for the Ep = 400 GeV data at the normal vertex position.
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Fig. 1: Illustration of the kinematic plane in Q2 and xIP at proton energies of 920 GeV and 400 GeV, with fixed
β = x/xIP = 0.23. The solid lines illustrate the experimental limits of 155◦ < θ′e < 173◦. The horizontal
dashed lines illustrate the Q2 range used for the simulation. The diagonal dashed lines illustrate the binning in y,
corresponding at Ep = 400 GeV to y = 0.9 (leftmost line), y = 0.8, y = 0.7 and y = 0.5 (rightmost line).

The expected precision on FD
L is obtained by error propagation through equation 2. The system-

atic uncertainties are estimated on the basis of previous experience with the H1 detector [1, 5]. At the
large y values involved, the kinematic variables are most accurately reconstructed using the electron en-
ergy and angle alone. The systematic uncertainties on the measurements of these quantities are assumed
to be correlated between the two beam energies. With the use of the BST and CJC, the possible bias in
the measurement of θ′e is at the level of 0.2 mrad. The energy scale of the SPACAL calorimeter is known
with a precision varying linearly from 2% at E ′e = 3 GeV to 0.2% at E ′e = 27.5 GeV. Other uncer-
tainties which are correlated between the two beam energies arise from the photoproduction background
subtraction (important at large y and assumed to be known with a precision of 25%) and the energy scale
for the hadronic final state used in the reconstruction of M

X
and hence xIP (taken to be known to 4%, as

currently). Sources of uncertainty which are assumed to be uncorrelated between the low and high Ep

measurements are the luminosity measurement (taken to be±1%), the trigger and electron track efficien-
cies (±1% combined) and the acceptance corrections, obtained using RAPGAP (±2%). The combined
uncorrelated error is thus 2.4%. Finally, a normalisation uncertainty of ±6% due to corrections for pro-
ton dissociation contributions is taken to act simultaneously in the two measurements. Other sources
of uncertainty currently considered in H1 measurements of diffraction are negligible in the kinematic
region studied here.

Full details of the simulated uncertainties on the FD
L measurements are given in Table 1. An illus-

tration of the corresponding expected measurement, based on the F D
L from the H1 2002 fit is shown in

Fig. 2. The most precise measurement is obtained at the highest y, where F D
L would be determined to be

unambiguously different from its maximum value of FD
2 and to be non-zero at the 4σ level. Two further

measurements are obtained at lower y values. The dominant errors arise from statistical uncertainties
and from uncertainties which are uncorrelated between the two beam energies. Minimising the latter is
a major experimental challenge to be addressed in the coming years.



Table 1: Summary of the simulation at Q2 = 12 GeV and β = 0.23. The first three columns contain the y ranges
used at Ep = 400 GeV and Ep = 920 GeV and the xIP values. The next two columns contain the values of
the diffractive structure functions. These are followed by the uncorrelated (δunc) and proton dissociation (δnorm)
uncertainties and the correlated systematics due to the electron energy (δE ′e) and angle (δθ′e) measurements, the
hadronic energy scale (δM

X
) and the photoproduction background (δγp), all in percent. The last three columns

summarise the systematic, statistical and total uncertainties.

y400 y920 xIP FD2 FDL δunc δnorm δE′e δθ′e δM
X

δγp δsyst δstat δtot

0.5 – 0.7 0.217 – 0.304 0.0020 15.72 3.94 34 6 8 2 7 0 36 20 41

0.7 – 0.8 0.304 – 0.348 0.0016 20.87 5.25 19 6 3 2 5 6 22 17 28

0.8 – 0.9 0.348 – 0.391 0.0014 24.47 6.16 14 6 6 1 2 13 21 13 25
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Fig. 2: Illustration of the simulated result for FDL , showing the three data points with statistical (inner bars) and
total (outer bars) errors.

Only one possible scenario has been investigated here, leading to a highly encouraging result at
relatively low β, which would provide a very good test of the leading twist F D

L and thus of the gluon
density extracted in QCD fits to FD

2 . It may also be possible to obtain results at high β, giving information
on the higher twist contributions in that region, for example by restricting the analysis to lower xIP .
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