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Abstract
The abundance of diffractive reactions observed at HERA indicates the pres-
ence of multiple interactions in DIS. These interactions are analysed, first in
a qualitative way, in terms of QCD Feynman diagrams. Then a quantitative
evaluation of diffractive and multiple interaction is performed with the help of
the AGK cutting rules applied within an Impact Parameter Dipole Saturation
Model. The cross-sections for multiple and diffractive interactions are found
to be of the same order of magnitude and to exhibit a similar Q2 dependence.

1 Introduction
One of the most important observations of HERA experiments is the rapid rise of the structure function
F2 with decreasing x indicating the presence of abundant gluon radiation processes [1]. The observation
of a substantial diffractive component in DIS processes, which is also quickly rising with decreasing x,
is equally important. The diffractive contribution at HERA is of a leading-twist type, i.e. the fraction
of diffractive events remains constant or decreases only logarithmically with increasing Q2. The pres-
ence of a substantial diffractive component suggests that, in addition to the usual partonic single ladder
contribution, also multi-ladder processes should be present.

In this talk I will first discuss the general role of multi-ladder contributions in DIS scattering,
called for historical reasons multi-Pomeron processes. The concept of a Pomeron is very useful in the
discussion of high energy scattering processes since it relates, by the AGK cutting rules [2], seemingly
different reactions like inclusive, diffractive and multiple scattering. I will present a numerical estimate
of the magnitude of diffractive and of multi-Pomeron contributions, using AGK cutting rules within a
dipole model which has been shown to provide a good description of HERA DIS data [3].

2 General Analysis
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Fig. 1: The single gluon-ladder contribution to the total γ∗p cross section. The blob at the lower end of the
diagrams contains the physics below the scale Q2

0 which seperates hard from soft physics, whereas the blob at the
upper end contains hard physics that can be described by pQCD. The dashed line denotes the cut.

Let us first recall that the main properties of HERA interactions can be related to the properties
of the elastic amplitude, Aγ∗p→γ∗p, which, by the optical theorem, is directly related to the total γ∗p
cross-section:

σγ∗p =
1

W 2
ImAγ∗p→γ∗p(W

2, t = 0). (1)



Here W denotes the γ∗p CMS energy and t the 4-momentum transfer of the elastically scattered proton.
At not too small Q2, the total cross section is dominated by the single ladder exchange shown in Fig. 1;
the ladder structure also illustrates the linear DGLAP evolution equations that are used to describe the
F2 data. In the region of small x, gluonic ladders are expected to dominate over quark ladders. The cut
lines in Fig. 1 mark the final states produced in a DIS event: a cut parton (gluon) hadronizes and leads to
jets or particles seen in the detector. It is generally expected that partons produced from a single chain
are unlikely to generate large rapidity gaps between them, since large gaps are exponentially suppressed
as a function of the gap size. Therefore, in the single ladder contribution of Fig. 1, diffractive final states
only reside inside the blob at the lower end, i.e. lie below the initial scale Q2

0.
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Fig. 2: The double-gluon ladder contribution to the inclusive diffractive γ∗p cross section

The properties of diffractive reactions at HERA, however, give clear indications that significant
contributions from multi-ladder exchanges should be present: not all diffractive final states are soft, in
particular the diffractive production of jets and charm was observed [4, 5]. In addition, the inclusive
diffractive cross-section is rising as quickly as the total cross-section with increasing W [6] and the
exclusive diffractive production of J/Ψ and Υ vector meson exhibits a rise with energy which is about
twice as fast [7]. In short, the Pomeron exchanged in inclusive diffractive DIS is harder than the hadronic
soft Pomeron and therefore, one should expect that the majority of the observed diffractive final states
cannot be absorbed into the blob of soft physics of Fig. 1. Instead, double ladder exchange, Fig. 2,
provides a potential source for these harder diffractive states: the cut blob at the upper end may contain
qq̄ and qq̄g states which hadronize into harder jets or particles. Further evidence for the presence of
multi-ladder contribution comes from saturation models which have been shown to successfully describe
HERA F2 data in the transition region at low Q2 and small x: these models are explicitly built on the
idea of summing over multiple exchanges of single ladders (or gluon densities).
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Fig. 3: The double-gluon ladder contribution to the elastic γ∗p amplitude

Let us analyse the content of a double ladder exchange contribution (for a more detailed analysis
see Ref. [8]). It is easiest to begin with the elastic γ∗p scattering amplitude, Fig. 3: from a t-channel
point of view, the two gluon ladders form a four gluon intermediate state which has to be symmetric
under permutations of the gluon lines (Bose symmetry). Therefore, on the amplitude level one cannot
distinguish between different diagrams of Fig. 3. Invoking now the optical theorem, (1), different con-
tributions to the total cross section correspond to different cuts through the two-ladder diagrams: they



are shown in Fig. 4, ordered w.r.t. the density of cut gluons. In Fig. 4a, the cut runs between the two
ladders: on the both sides of the cut there is a color singlet ladder, and we expect a rapidity gap between
the upper blob (containing, for example, a diffractive qq̄ final state) and the proton remnants inside the
lower blob. Similarly, the diagram of Fig. 4b describes a single cut ladder with a final state similar to
the one ladder contribution in Fig. 1; this contribution simply represents a correction to the one ladder
contribution. Finally, the diagram of Fig. 4c belongs to final states with double density of cut partons.
As outlined in [9], the correct counting of statistic factors and combinatorics leads to the result that the
contributions shown in Fig. 4 a - c are identical, up to the overall counting factors 1 : −4 : 2.
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Fig. 4: Three examples of 2-ladder contributions (lhs), with the corresponding, schematical, detector signatures
(rhs). Top row: the diagram (a) with the cut positions (2) describes diffractive scattering. Middle row: the diagram
(b) with the cut position (1) describes inclusive final states with single densityof cut partons. Bottom row: the
diagram (c) with the cut position (2) describes inclusive final states with increased multiplicity.

Experimentally it is easy to differentiate between diffractive and single or multiple inclusive final
states since diffractive states exhibit large rapidity gaps. The multiple inclusive final states should also be
distinct from the single inclusive ones since, at least naively, we would expect that in the multiple case the
particle multiplicity should be considerably higher. At low x, however, the relation between the number
of virtual states excited in the interaction (as measured by F2) and the final particle multiplicity cannot
be straight-forward since the growth of F2 with decreasing x is faster than the multiplicity increase. This
may indicate that the hadronization mechanism may be different from the string picture commonly used
in the hadronization procedure of single chain parton showers. The influence of multiple scattering on



the particle multiplicity of the final states should also be damped by the energy conservation. The cut
through several Pomerons leads clearly to more gluons produced in the final state, but the available energy
to produce particles in the hadronization phase remains the same. A detailed Monte Carlo program is
therefore necessary to evaluate this effect.
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Fig. 5: 3-Pomeron contributions to the elastic γ∗p amplitude. All 15 possible diagrams are shown with some
examples of Pomeron cuts.

The number of diagrams contributing to the reaction amplitude increases very quickly with the
number of Pomerons. For the 3-Pomeron amplitude the gluons can be paired in 15 possible ways, shown
in Fig. 5 with the examples of 0-Pomeron, 1-Pomeron, 2-Pomeron and 3-Pomeron cuts. Form-Pomerons
the number of possible gluon pairs and also diagrams is:

(2m− 1)(2m− 3)(2m − 5).... = (2m− 1)!/(2m−1(m− 1)!).

Assuming that all the diagrams for a given multi-Pomeron exchange amplitude contribute in the
same way, the above analysis suggests that the probability for different cuts to contribute should be given



by the combinatorial factors. This is the content of the AGK rules which were obtained from the analysis
of field theoretical diagrams well before QCD was established [2] and which relate the cross-section, σk,
for observing a final state with k-cut Pomerons with the amplitudes for exchange of m Pomerons, F (m):

σk =

∞∑

m=k

(−1)m−k 2m
m!

k!(m− k)!
F (m). (2)

The same result is also obtained from a detailed analysis of the Feynman diagram contributions in
QCD with the oversimplified assumption that only the symmetric part of the two-gluon couplings con-
tributes [9].

3 Multiple Interactions in the Dipole Model

Fig. 6: LHS: The γ∗p cross-section as a function of W 2. RHS: The differential cross section for exclusive diffrac-
tive J/Ψ production as a function of the four-momentum transfer t. The solid line shows a fit by the IP saturation
model.

The properties of the multi-Pomeron amplitude and of the cut Pomeron cross-sections can be
quantitatively studied in a dipole model. Let us first recall the main properties of the dipole picture,
see Ref. [10, 11] and [3]. In the model the γ∗p interaction proceeds in three stages: first the incoming
vitual photon fluctuates into a quark-antiquark pair, then the qq̄ pair elastically scatters on the proton,
and finally the qq̄ pair recombines to form a virtual photon. The total cross-section for γ ∗p scattering,
or equivalently F2, is obtained by averaging the dipole cross-sections with the photon wave functions,
ψ(r, z), and integrating over the impact parameter, b:

F2 =
Q2

4π2αem

∫
d2r

∫
dz

4π
ψ∗ψ

∫
d2b

dσqq
d2b

. (3)



Here ψ∗ψ denotes the probability for a virtual photon to fluctuate into a qq̄ pair, summed over all flavors
and helicity states. The dipole cross-section is assumed to be a function of the opacity Ω:

dσqq
d2b

= 2

(
1− exp(−Ω

2
)

)
. (4)

At small-x the opacity Ω can be directly related to the gluon density, xg(x, µ2), and the transverse profile
of the proton, T (b):

Ω =
π2

NC
r2 αs(µ

2)xg(x, µ2)T (b) . (5)

The parameters of the gluon density are determined from the fit to the total inclusive DIS cross-section,
as shown in Fig. 6 [3]. The transverse profile was determined from the exclusive diffractive J/Ψ cross-
sections shown in the same figure. The opacity function Ω determined in this way has predictive prop-
erties; it allows to describe other measured reactions, e.g. charm structure function or elastic diffractive
J/Ψ production shown in Fig.7.
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Fig. 7: LHS: Charm structure function, F c2 . RHS: Total elastic J/Ψ cross-section. The solid line shows the reswult
of the IP saturation model.

For a small value of Ω the dipole cross-section, Eq (4), is equal to Ω and therefore proportional
to the gluon density. This allows to identify the opacity with the single Pomeron exchange amplitude of
Fig. 1. The multi-Pomeron amplitude is determined from the expansion:

dσqq
d2b

= 2

(
1− exp(−Ω

2
)

)
= 2

∞∑

m=1

(−1)m−1

(
Ω

2

)m 1

m!
(6)

as

F (m) =

(
Ω

2

)m 1

m!
, (7)



since the dipole cross-section can be expressed as a sum of multi-Pomeron amplitudes [12] in the fol-
lowing way:

dσqq
d2b

= 2

∞∑

m=1

(−1)m−1 F (m) . (8)

The cross-section for k cut Pomerons is then obtained from the AGK rules, eq. 2, and from the multi-
Pomeron amplitude, Eq. (7), as:

dσk
d2b

=

∞∑

m=k

(−1)m−k 2m
m!

k!(m− k)!

(
Ω

2

)m 1

m!
=

Ωk

k!

∞∑

m=k

(−1)m−k
Ωm−k

(m− k)!
(9)

which leads to a simple expression:

dσk
d2b

=
Ωk

k!
exp(−Ω) . (10)

The diffractive cross-section is given by the difference between the total and the sum over all cut cross-
sections:

dσdiff
d2b

=
dσtot
d2b

−
∞∑

k=1

dσk
d2b

= 2

(
1− exp

(
−Ω

2

))
− (1− exp(−Ω)) =

(
1− exp

(
−Ω

2

))2

. (11)

Fig. 8: Examples of b dependence of various cut dipole and diffractive cross-sections.

The cut cross-sections determined in the dipole model analysis of HERA data have several inter-
esting properties shown in Fig. 8: for small dipoles (r = 0.1 fm) the opacity Ω is also small, so the
single cut cross-section, σ1, dominates. This leads to particle production emerging only from the one-cut
pomeron, which should correspond, in the context of e.g. the LUND model, to a fragmentation of only
one string. For larger dipoles (r = 0.6 fm) the dipole cross-section starts to be damped in the middle of
the proton (at b ≈ 0) by saturation effects. Therefore, the single cut cross-section is suppressed in the
middle while the multiple cut cross-sections, σ2, σ3, etc, become substantial and increasingly concen-
trated in the proton center. These, fairly straight-forward properties of dipoles indicate that in the central
scattering events the multiple scattering probability will be enhanced, which may lead at the LHC to
substantial effects in a surrounding event multiplicity.

The contribution to F2 from the k-cut Pomeron exchanges are computed in the analogous way to
F2:

F k2 =
Q2

4π2αem

∫
d2r

∫
dz

4π
ψ∗ψ

∫
d2b

dσk
d2b

. (12)
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Fig. 9: F2 and the contributions of k-cut Pomeron processes, F k2 .

These contributions are shown, together with F2, as a function of x for two representative Q2 values in
Fig. 9. One finds that multiple interaction contributions, i.e. k ≥ 2, in the perturbative region, at Q2 = 4
GeV2, are substantial. In the typical HERA range of x ≈ 10−3− 10−4, the k = 2 contribution is around
10% of F2 and the contributions of higher cuts are also non-negligible. For example, the contribution of
the 5-cut Pomeron exchanges is still around 0.5%, which means that at HERA, many thousand events
may come from this type of process. Figure 10 shows the fraction of the multpile interaction processes,
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Fig. 10: Fractions of single (k=1), multiple interaction (MI) and diffraction (D) in DIS

FMI
2 = F k=2

2 + F k=3
2 + F k=4

2 + F k=5
2 in F2, at the same Q2 values. At Q2 = 4 GeV2 the fraction of

multiple scattering events is around 14% and atQ2 = 40 GeV2 around 6%, in the HERA x region, which
indicates that the decrease of multiple scattering with increasing Q2 is only logarithmic. The fraction of
diffractive processes, shown for comparison, is of the same order, and drops also logarithmically with
Q2. The logarithmic drop of the diffractive contribution expected in the dipole model is confirmed by
the data [6].

The dipole model provides a straight-forward extrapolation to the region of low Q2, which is
partly perturbative and partly non-perturbative. Figure 11 shows the contribution to F2 of k-cut Pomeron
processes and the fractions of multiple interactions and diffractive processes at Q2 = 0.4 GeV2.



Note also that, as a byproduct of this investigation, the ratio of diffractive and inclusive cross-
sections, FD2 /F2 is found to be almost independent of x, in agreement with the data and also other
dipole model predictions [6, 13, 14]. The absolute amount of diffractive effects is underestimated, since
the evaluation of diffraction through AGK rules is oversimplified. It is well known [14], that a proper
evaluation of diffraction should also take into account the qq̄g contribution which is missing in the simple
AGK schema.

In conclusion, we find that the impact parameter dependent dipole saturation model [3] repro-
duces well the main properties of the data and leads to the prediction that multiple interaction effects at
HERA should be of the order of diffractive effects, which are known to be substantial. The multiple in-
teraction effects should decrease slowly (logarithmically) with increasing Q2, similarly to the diffractive
contribution.
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Fig. 11: Left: F2 and the contributions of k-cut Pomeron processes. Right: Fractions of single (k=1), multiple
interaction (MI) and diffraction (D) in DIS at Q2 = 0.4 GeV2.
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