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Abstract
Diffractive reactions involving a hard scale can be understood in terms of
quarks and gluons. These reactions have become a valuable tool for inves-
tigating the low-x structure of the proton and the behavior of QCD in the high-
density regime, and they may provide a clean environment to study or even
discover the Higgs boson at the LHC. In this paper we give a brief introduc-
tion to the description of diffraction in QCD. We focus on key features studied
in ep collisions at HERA and outline challenges for understanding diffractive
interactions at the LHC.

1 Introduction
In hadron-hadron scattering a substantial fraction of the total cross section is due to diffractive reactions.
Figure 1 shows the different types of diffractive processes in the collision of two hadrons: in elastic scat-
tering both projectiles emerge intact in the final state, whereas single or double diffractive dissociation
corresponds to one or both of them being scattered into a low-mass state; the latter has the same quantum
numbers as the initial hadron and may be a resonance or continuum state. In all cases, the energy of the
outgoing hadrons a, b or the states X , Y is approximately equal to that of the incoming beam particles,
to within a few per cent. The two (groups of) final-state particles are well separated in phase space and
in particular have a large gap in rapidity between them.

Fig. 1: Elastic scattering, single diffractive dissociation and double diffractive dissociation in the collision of two
hadrons a and b. The two (groups of) final-state hadrons are separated by a large rapidity gap (LRG). The zigzag
lines denote the exchange of a Pomeron (IP ) in the t-channel. There are further graphs, not shown, with multiple
Pomeron exchange.

Diffractive hadron-hadron scattering can be described within Regge theory (see e.g. [1]). In this
framework, the exchange of particles in the t-channel is summed coherently to give the exchange of
so-called “Regge trajectories”. Diffraction is characterized by the exchange of a specific trajectory, the
“Pomeron”, which has the quantum numbers of the vacuum. Regge theory has spawned a successful
phenomenology of soft hadron-hadron scattering at high energies. Developed in the 1960s, it predates
the theory of the strong interactions, QCD, and is based on general concepts such as dispersion rela-
tions. Subsequently it was found that QCD perturbation theory in the high-energy limit can be organized
following the general concepts of Regge theory; this framework is often referred to as BFKL after the
authors of the seminal papers [2].
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Fig. 2: Distribution of the intensity I in the diffraction of light of wavelength λ from a circular target of size R0.

It is clear that a t-channel exchange leading to a large rapidity gap in the final state must carry zero
net color: if color were exchanged, the color field would lead to the production of further particles filling
any would-be rapidity gap. In QCD, Pomeron exchange is described by the exchange of two interacting
gluons with the vacuum quantum numbers.

The effort to understand diffraction in QCD has received a great boost from studies of diffractive
events in ep collisions at HERA (see e.g. [3] for further reading and references). The essential results of
these studies are discussed in the present paper and can be summarized as follows:

– Many aspects of diffraction are well understood in QCD when a hard scale is present, which
allows one to use perturbative techniques and thus to formulate the dynamics in terms of quarks
and gluons. By studying what happens when the hard scale is reduced towards the non-perturbative
region, it may also be possible to shed light on soft diffractive processes.

– Diffraction has become a tool to investigate low-momentum partons in the proton, notably through
the study of diffractive parton densities in inclusive processes and of generalized parton distribu-
tions in exclusive ones. Diffractive parton densities can be interpreted as conditional probabilities
to find a parton in the proton when the final state of the process contains a fast proton of given four-
momentum. Generalized parton distributions, through their dependence on both longitudinal and
transverse variables, provide a three-dimensional picture of the proton in high-energy reactions.

– A fascinating link has emerged between diffraction and the physics of heavy-ion collisions through
the concept of saturation, which offers a new window on QCD dynamics in the regime of high
parton densities.

Perhaps unexpectedly, the production of the Higgs boson in diffractive pp collisions is drawing more
and more attention as a clean channel to study the properties of a light Higgs boson or even discover
it. This is an example of a new theoretical challenge: to adapt and apply the techniques for the QCD
description of diffraction in ep collisions to the more complex case of pp scattering at the LHC. A first
glimpse of phenomena to be expected there is provided by the studies of hard diffraction in pp̄ collisions
at the Tevatron.

1.1 A digression on the nomenclature: why “diffraction” ?
Physics students first encounter the term “diffraction” in optics. Light of wavelength λ impinging on
a black disk of radius R0 produces on a distant screen a diffraction pattern, characterized by a large
forward peak for scattering angle θ = 0 (the “diffraction peak”) and a series of symmetric minima and
maxima, with the first minimum at θmin ' ±λ/(2R0) (Fig. 2). The intensity I as a function of the
scattering angle θ is given by

I(θ)

I(θ = 0)
=

[2J1(x)]2

x2
' 1− R2

0

4
(kθ)2, (1)



Fig. 3: Compilation of proton-proton elastic cross section data as a function of t. The symbol P indicates the
momentum of the incoming proton in a fixed target experiment and

√
s the center-of-mass energy in a pp collider

setup.

where J1 is the Bessel function of the first order and x = kR0 sin θ ' kR0 θ with k = 2π/λ. The
diffraction pattern is thus related to the size of the target and to the wavelength of the light beam.

As shown in Fig. 3, the differential cross section dσ/dt for elastic proton-proton scattering, pp→
pp, bears a remarkable resemblance to the diffraction pattern just described (see e.g. [4]). At low values
of |t| one has

dσ
dt (t)

dσ
dt (t = 0)

' e−b|t| ' 1− b (Pθ)2, (2)

where |t| ' (Pθ)2 is the absolute value of the squared four-momentum transfer, P is the incident proton
momentum and θ is the scattering angle. The t-slope b can be written as b = R2/4, where once again
R is related to the target size (or more precisely to the transverse distance between projectile and target).
A dip followed by a secondary maximum has also been observed, with the value of |t| at which the dip
appears decreasing with increasing proton momentum. It is hence not surprising that the term diffraction
is used for elastic pp scattering. Similar t distributions have been observed for the other diffractive
reactions mentioned above, leading to the use of the term diffraction for all such processes.

1.2 Diffraction at HERA ?!
Significant progress in understanding diffraction has been made at the ep collider HERA, where 27.5 GeV
electrons or positrons collide with 820 or 920 GeV protons. This may sound peculiar: diffraction is a
typical hadronic process while ep scattering at HERA is an electro-weak reaction, where the electron
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Fig. 4: Schematic diagram of inclusive diffractive DIS, ep→ eXp. Four-momenta are indicated in parentheses.

radiates a virtual photon (or a Z or W boson), which then interacts with the proton.1 To understand
this, it is useful to look at ep scattering in a frame where the virtual photon moves very fast (for instance
in the proton rest frame, where the γ∗ has a momentum of up to about 50 TeV at HERA). The virtual
photon can fluctuate into a quark-antiquark pair. Because of its large Lorentz boost, this virtual pair
has a lifetime much longer than a typical strong interaction time. In other words, the photon fluctuates
into a pair long before the collision, and it is the pair that interacts with the proton. This pair is a small
color dipole. Since the interaction between the pair and the proton is mediated by the strong interaction,
diffractive events are possible.

An advantage of studying diffraction in ep collisions is that, for sufficiently large photon virtuality
Q2, the typical transverse dimensions of the dipole are small compared to the size of a hadron. Then the
interaction between the quark and the antiquark, as well as the interaction of the pair with the proton, can
be treated perturbatively. With decreasing Q2 the color dipole becomes larger, and at very low Q2 these
interactions become so strong that a description in terms of quarks and gluons is no longer justified. We
may then regard the photon as fluctuating into a vector meson – this is the basis of the well-known vector
meson dominance model – and can therefore expect to see diffractive reactions very similar to those in
hadron-hadron scattering.

A different physical picture is obtained in a frame where the incident proton is very fast. Here, the
diffractive reaction can be seen as the deep inelastic scattering (DIS) of a virtual photon on the proton
target, with a very fast proton in the final state. One can thus expect to probe partons in the proton in a
very specific way. For suitable diffractive processes there are in fact different types of QCD factorization
theorems, which bear out this expectation (see Sects. 2 and 3).

2 Inclusive diffractive scattering in ep collisions
Figure 4 shows a schematic diagram of inclusive diffractive DIS. The following features are important:

– The proton emerges from the interaction carrying a large fraction xL of the incoming proton mo-
mentum. Diffractive events thus appear as a peak at xL ≈ 1, the diffractive peak, which at HERA
approximately covers the region 0.98 < xL < 1 (see the left panel of Fig. 5). The right panel of
Fig. 5 shows that large values of |t| are exponentially suppressed, similarly to the case of elastic
pp scattering we discussed in Sect. 1.1. These protons remain in the beam-pipe and can only be
measured with detectors located inside the beam-pipe.

– The collision of the virtual photon with the proton produces a hadronic final state X with the
photon quantum numbers and invariant mass MX . A large gap in rapidity (or pseudorapidity) is
present between X and the final-state proton. Figure 6 shows a typical diffractive event at HERA.

1For simplicity we will speak of a virtual photon in the following, keeping in mind that one can have a weak gauge boson
instead.
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Fig. 5: Left: Differential cross section dσ/dxL for the process ep → eXp (from [5]). The diffractive peak at
xL ≈ 1 is clearly visible. Right: Differential cross section dσ/dt for the same process for xL > 0.99 (from [6]).
The average |t| of this spectrum is 〈|t|〉 ≈ 0.15 GeV2.

Diffractive ep scattering thus combines features of hard and soft scattering. The electron receives a large
momentum transfer; in fact Q2 can be in the hundreds of GeV2. In contrast, the proton emerges with its
momentum barely changed.

2.1 Diffractive structure functions
The kinematics of γ∗p→ Xp can be described by the invariants Q2 = −q2 and t = (P − P ′)2, and by
the scaling variables xIP and β given by

xIP =
(P − P ′) · q

P · q =
Q2 +M2

X − t
W 2 +Q2 −M2

p

, β =
Q2

2(P − P ′) · q =
Q2

Q2 +M2
X − t

, (3)

where W 2 = (P + q)2 and the four-momenta are defined in Fig. 4. The variable xIP is the fractional
momentum loss of the incident proton, related as xIP ' 1−xL to the variable xL introduced above. The
quantity β has the form of a Bjorken variable defined with respect to the momentum P − P ′ lost by the
initial proton instead of the initial proton momentum P . The usual Bjorken variable xB = Q2/(2P · q)
is related to β and xIP as βxIP = xB .

The cross section for ep → eXp in the one-photon exchange approximation can be written in
terms of diffractive structure functions FD(4)

2 and FD(4)
L as

dσep→eXp

dβ dQ2 dxIP dt
=

4πα2
em

βQ4

[(
1− y +

y2

2

)
F
D(4)
2 (β,Q2, xIP , t)−

y2

2
F
D(4)
L (β,Q2, xIP , t)

]
, (4)

in analogy with the way dσep→eX/(dxB dQ2) is related to the structure functions F2 and FL for inclusive
DIS, ep→ eX . Here y = (P ·q)/(P ·k) is the fraction of energy lost by the incident lepton in the proton
rest frame. The structure function FD(4)

L corresponds to longitudinal polarization of the virtual photon;



Fig. 6: A DIS event with a large rapidity gap (LRG) observed with the ZEUS detector at HERA. The scattered
proton escapes into the beam-pipe. The symbol ∆η denotes the difference in pseudorapidity between the scattered
proton and the most forward particle of the observed hadronic system X . Pseudorapidity is defined as η =

− ln tan(θ/2) in terms of the polar angle θ measured with respect to the incoming proton direction, which is
defined as “forward”.
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Fig. 7: Parton model diagrams for deep inelastic diffractive (a) and inclusive (b) scattering. The variable β is the
momentum fraction of the struck quark with respect to P − P ′, and xB its momentum fraction with respect to P .

its contribution to the cross section is small in a wide range of the experimentally accessible kinematic
region (in particular at low y). The structure function FD(3)

2 is obtained from F
D(4)
2 by integrating over t:

F
D(3)
2 (β,Q2, xIP ) =

∫
dt F

D(4)
2 (β,Q2, xIP , t). (5)

In a parton model picture, inclusive diffraction γ∗p→ Xp proceeds by the virtual photon scatter-
ing on a quark, in analogy to inclusive scattering (see Fig. 7). In this picture, β is the momentum fraction
of the struck quark with respect to the exchanged momentum P − P ′ (indeed the allowed kinematical
range of β is between 0 and 1). The diffractive structure function describes the proton structure in these
specific processes with a fast proton in the final state. FD

2 may also be viewed as describing the struc-
ture of whatever is exchanged in the t-channel in diffraction, i.e. of the Pomeron (if multiple Pomeron
exchange can be neglected). It is however important to bear in mind that the Pomeron in QCD cannot be
interpreted as a particle on which the virtual photon scatters, as we will see in Sect. 2.5.

Figures 8 and 9 show recent H1 data [7] on FD(3)
2 at fixed xIP as a function of β for different Q2

bins, and as a function of Q2 for different bins of β.2 The data have two remarkable features:
2To be precise, the H1 data are for the so-called reduced diffractive cross section, which equals FD(3)

2 if FDL can be
neglected.



Fig. 8: Left: the diffractive structure function of the proton as a function of β (from [7]). Right: the structure
function of the proton as a function of xB (from [8]). The two highlighted bins show the different shapes of FD2
and F2 in corresponding ranges of β and xB at equal Q2.

Fig. 9: Left: the diffractive structure function of the proton as a function of Q2 (from [7]). Right: the structure
function of the proton as a function of Q2 (from [9]).



– FD2 is largely flat in the measured β range. Keeping in mind the analogy between β in diffractive
DIS and xB in inclusive DIS, this is very different from the behavior of the “usual” structure
function F2, which strongly decreases for xB & 0.2 (see Fig. 8).

– The dependence on Q2 is logarithmic, i.e. one observes approximate Bjorken scaling. This in-
dicates the applicability of the parton model picture to inclusive γ∗p diffraction. The structure
function FD2 increases with Q2 for all β values except the highest. This is reminiscent of the
scaling violations of F2, except that F2 rises with Q2 only for xB . 0.2 and that the scaling vio-
lations become negative at higher xB (see Fig. 9). In the proton, negative scaling violations reflect
the presence of the valence quarks radiating gluons, while positive scaling violations are due to the
increase of the sea quark and gluon densities as the proton is probed with higher resolution. The
FD2 data thus suggest that the partons resolved in diffractive events are predominantly gluons. This
is not too surprising if one bears in mind that these partons carry only a small part of the proton
momentum: the struck quark in the diagram of Fig. 7a has a momentum fraction βxIP = xB with
respect to the incident proton, and xIP . 0.02 – 0.03 in diffractive events.

2.2 Diffractive parton distributions
The conclusion just reached can be made quantitative by using the QCD factorization theorem for inclu-
sive diffraction, γ∗p → Xp, which formalizes the parton model picture we have already invoked in our
discussion. According to this theorem, the diffractive structure function, in the limit of large Q2 at fixed
β, xIP and t, can be written as [10–12]

F
D(4)
2 (β,Q2, xIP , t) =

∑

i

∫ 1

β

dz

z
Ci

(β
z

)
fDi (z, xIP , t;Q

2), (6)

where the sum is over partons of type i. The coefficient functions Ci describe the scattering of the
virtual photon on the parton and are exactly the same as in inclusive DIS. In analogy to the usual parton
distribution functions (PDFs), the diffractive PDFs fDi (z, xIP , t;Q

2) can be defined as operator matrix
elements in a proton state, and their dependence on the scale Q2 is given by the DGLAP evolution
equations. In parton model language, they can be interpreted as conditional probabilities to find a parton
i with fractional momentum zxIP in a proton, probed with resolution Q2 in a process with a fast proton
in the final state (whose momentum is specified by xIP and t).

During the workshop, several fits of the available FD
2 data were discussed which are based on the

factorization formula (6) at next-to-leading order (NLO) in αs [13,14]. Figure 10 compares the diffractive
PDFs from an earlier H1 fit [7] to those from the fit of the ZEUS data [15] by Schilling and Newman [13].
As expected the density of gluons is larger than that of quarks, by about a factor 5–10. Discrepancies
between the two sets are evident, and it remains to be clarified to which extent they reflect differences in
the fitted data. Martin, Ryskin and Watt [16] have argued that the leading-twist formula (6) is inadequate
in large parts of the measured kinematics, and performed a fit to a modified expression which includes
an estimate of power-suppressed effects. The discrepancies between the various diffractive PDFs, while
not fully understood, may be taken as an estimate of the uncertainties on these functions at this point in
time. A precise and consistent determination of the diffractive PDFs and their uncertainties is one of the
main tasks the HERA community has to face in the near future. They are a crucial input for predicting
cross sections of inclusive diffractive processes at the LHC.

2.3 Diffractive hard-scattering factorization
Like usual parton densities, diffractive PDFs are process-independent functions. They appear not only
in inclusive diffraction but also in other processes where diffractive hard-scattering factorization holds.
In analogy with Eq. (6), the cross section of such a process can be evaluated as the convolution of the
relevant parton-level cross section with the diffractive PDFs. For instance, the cross section for charm
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production in diffractive DIS can be calculated at leading order in αs from the γ∗g → cc̄ cross section
and the diffractive gluon distribution. An analogous statement holds for jet production in diffractive DIS.
Both processes have been analyzed at next-to-leading order in αs.

As an example, Fig. 11 shows a comparison between the measured cross sections for diffractive
dijet production and the expectations based on diffractive PDFs extracted from a fit to F D

2 . These data
lend support to the validity of hard-scattering factorization in diffractive γ ∗p interactions. For further
discussion we refer the reader to [18].

2.4 Limits of diffractive hard-scattering factorization: hadron-hadron collisions
A natural question to ask is whether one can use the diffractive PDFs extracted at HERA to describe hard
diffractive processes such as the production of jets, heavy quarks or weak gauge bosons in pp̄ collisions
at the Tevatron. Figure 12 shows results on diffractive dijet production from the CDF collaboration [19]
compared to the expectations based on the diffractive PDFs [6, 7] from HERA. The discrepancy is spec-
tacular: the fraction of diffractive dijet events at CDF is a factor 3 to 10 smaller than would be expected on
the basis of the HERA data. The same type of discrepancy is consistently observed in all hard diffractive
processes in pp̄ events, see e.g. [20]. In general, while at HERA hard diffraction contributes a fraction of
order 10% to the total cross section, it contributes only about 1% at the Tevatron.
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Fig. 12: CDF results for the cross section of diffractive dijet production with a leading antiproton in pp̄ collisions
(expressed in terms of a structure function FDJJ ), compared with the predictions obtained from the diffractive
PDFs [6] and [7] extracted at HERA (from [21]). See also the analogous plot in the original CDF publication [19].

In fact, diffractive hard-scattering factorization does not apply to hadron-hadron collisions [11,12].
Attempts to establish corresponding factorization theorems fail because of interactions between spectator
partons of the colliding hadrons. The contribution of these interactions to the cross section does not
decrease with the hard scale. Since they are not associated with the hard-scattering subprocess (see
Fig. 13), we no longer have factorization into a parton-level cross section and the parton densities of
one of the colliding hadrons. These interactions are generally soft, and we have at present to rely on
phenomenological models to quantify their effects [22].
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Fig. 13: Example graph for diffractive dijet production with a leading antiproton in a pp̄ collision. The interaction
indicated by the large vertical blob breaks hard diffractive factorization. It reduces the diffractive cross section, as
explained in the text.

The yield of diffractive events in hadron-hadron collisions is lowered precisely because of these
soft interactions between spectator partons (often referred to as “reinteractions” or “multiple scatter-
ings”). They can produce additional final-state particles which fill the would-be rapidity gap (hence the
often-used term “rapidity gap survival”). When such additional particles are produced, a very fast proton
can no longer appear in the final state because of energy conservation. Diffractive factorization breaking
is thus intimately related to multiple scattering in hadron-hadron collisions; understanding and describing
this phenomenon is a challenge in the high-energy regime that will be reached at the LHC [23].

In pp or pp̄ reactions, the collision partners are both composite systems of large transverse size, and
it is not too surprising that multiple interactions between their constituents can be substantial. In contrast,
the virtual photon in γ∗p collisions has small transverse size, which disfavors multiple interactions and
enables diffractive factorization to hold. According to our discussion in Sect. 1.2, we may expect that for
decreasing virtuality Q2 the photon behaves more and more like a hadron, and diffractive factorization
may again be broken. This aspect of diffractive processes in photoproduction at HERA was intensively
discussed during the workshop, and findings are reported in [18].

2.5 Space-time structure: the Pomeron is not a particle
It is tempting to interpret diffractive γ∗p processes as the scattering of a virtual photon on a Pomeron
which has been radiated off the initial proton. Diffractive DIS would then probe the distribution of par-
tons in a “Pomeron target”. This is indeed the picture proposed by Ingelman and Schlein long ago [24].

This picture is however not supported by an analysis in QCD (see e.g. [25]). There, high-energy
scattering is dominated by the exchange of two gluons, whose interaction is (in an appropriate gauge)
described by ladder diagrams, as shown in Fig. 14. By analyzing these diagrams in time-ordered per-
turbation theory, one can obtain the dominant space-time ordering in the high-energy limit. The result
depends on the reference frame, as illustrated in the figure. In the Breit frame, which is natural for a
parton-model interpretation, the photon does not scatter off a parton in a pre-existing two-gluon system;
in fact some of the interactions in the gluon ladder building up the Pomeron exchange take place long
after the virtual photon has been absorbed. The picture in the Breit frame is however compatible with
the interpretation of diffractive parton densities given in Sect. 2.2, namely the probability to find a parton
under the condition that subsequent interactions will produce a fast proton in the final state.

We note that the Ingelman-Schlein picture suggests that the diffractive structure function takes a
factorized form F

D(4)
2 = fIP (xIP , t)F

IP
2 (β,Q2), where fIP is the “Pomeron flux” describing the emis-

sion of the Pomeron from the proton and its subsequent propagation, and where F IP
2 is the “structure

function of the Pomeron”. Phenomenologically, such a factorizing ansatz works not too badly and is
often used, but recent high-precision data have shown its breakdown at small xIP [15].
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Fig. 14: Dominant time ordering for diffractive dissociation of a virtual photon in (a) the Breit frame, (b) the
photon-proton center-of-mass, (c) the proton rest frame. The physical picture in (a) corresponds to the parton-
model description of diffraction, and the one in (b) and (c) to the picture of the photon splitting into a quark-
antiquark dipole which subsequently interacts with the proton.

3 Exclusive diffractive processes
Let us now discuss diffractive processes where a real or virtual photon dissociates into a single particle.
Since diffraction involves the exchange of vacuum quantum numbers, this particle can in particular be
a vector meson (which has the same JPC quantum numbers as the photon) – in this case the process
is sometimes referred to as “elastic” vector meson production. Another important case is deeply virtual
Compton scattering (DVCS), γ∗p→ γp.3 A striking feature of the data taken at HERA (Figs. 15 and 16)
is that the energy dependence of these processes becomes steep in the presence of a hard scale, which can
be either the photon virtuality Q2 or the mass of the meson in the case of J/Ψ or Υ production. This is
similar to the energy dependence of the γ∗p total cross section (related by the optical theorem to forward
Compton scattering, γ∗p→ γ∗p), which changes from flat to steep when going from real photons to Q2

of a few GeV2.

To understand this similarity, let us recall that in perturbative QCD diffraction proceeds by two-
gluon exchange. The transition from a virtual photon to a real photon or to a quark-antiquark pair
subsequently hadronizing into a meson is a short-distance process involving these gluons, provided that
either Q2 or the quark mass is large. In fact, in an approximation discussed below, the cross sections for
DVCS and vector meson production are proportional to the square of the gluon distribution in the proton,
evaluated at a scale of order Q2 + M2

V and at a momentum fraction xIP = (Q2 + M2
V )/(W 2 + Q2),

where the vector meson mass MV now takes the role of MX in inclusive diffraction [28]. In analogy
to the case of the total γ∗p cross section, the energy dependence of the cross sections shown in Figs. 15
and 16 thus reflects the x and scale dependence of the gluon density in the proton, which grows with
decreasing x with a slope becoming steeper as the scale increases.

There is however an important difference in how the gluon distribution enters the descriptions of
inclusive DIS and of exclusive diffractive processes. The inclusive DIS cross section is related via the
optical theorem to the imaginary part of the forward virtual Compton amplitude, so that the graphs in
Fig. 17 represent the cross section of the inclusive process. Hence, the gluon distribution in Fig. 17a gives
the probability to find one gluon in the proton (with any number of unobserved spectator partons going
into the final state). In contrast, the corresponding graphs for DVCS and exclusive meson production
in Fig. 18 represent the amplitudes of exclusive processes, which are proportional to the probability
amplitude for first extracting a gluon from the initial proton and then returning it to form the proton in
the final state. In the approximation discussed below, this probability amplitude is given by the gluon
distribution. The cross sections of DVCS and exclusive meson production are then proportional to the
square of the gluon distribution.

A detailed theoretical analysis of DVCS and exclusive meson production at large Q2 shows that
short-distance factorization holds, in analogy to the case of inclusive DIS. QCD factorization theo-
rems [29] state that in the limit of large Q2 (at fixed Bjorken variable xB and fixed t) the Compton

3We do not discuss processes with diffractive dissociation of the proton in this paper, but wish to mention interesting studies
of vector meson or real photon production at large |t|, where the proton predominantly dissociates, see e.g. [26].



Fig. 15: Compilation of results on the cross section for vector meson photoproduction, γp→ V p, with V = ρ, ω,
φ, J/Ψ, ψ′, Υ, as a function W . The total γp cross section σtot is also shown.

amplitude factorizes into a hard-scattering subprocess and a hadronic matrix element describing the emis-
sion and reabsorption of a parton by the proton target (see Fig. 18a). As shown in Fig. 18b, the analogous
result for exclusive meson production involves in addition the quark-antiquark distribution amplitude of
the meson (often termed the meson wave function) and thus a further piece of non-perturbative input.

The hadronic matrix elements appearing in the factorization formulae for exclusive processes
would be the usual PDFs if the proton had the same momentum in the initial and final state. Since
this is not the case, they are more general functions taking into account the momentum difference be-
tween the initial and final state proton (or, equivalently, between the emitted and reabsorbed parton).
These “generalized parton distributions” (GPDs) depend on two independent longitudinal momentum
fractions instead of a single one (compare Figs. 17a and 18a), on the transverse momentum transferred
to the proton (whose square is −t to a good approximation at high energy), and on the scale at which the
partons are probed. The scale dependence of the GPDs is governed by a generalization of the DGLAP
equations. The dependence on the difference of the longitudinal momenta (often called “skewness”)
contains information on correlations between parton momenta in the proton wave function. It can be
neglected in the approximation of leading log x (then the GPDs at t = 0 reduce to the usual PDFs as
anticipated above), but it is numerically important in typical HERA kinematics. The dependence on
t allows for a very intuitive interpretation if a Fourier transformation is performed with respect to the
transverse momentum transfer. We then obtain distributions depending on the impact parameter of the
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fits to the data with the form σ(γ∗p→ ρp) ∝W δ, yielding the exponents given in the figure.

partons, which describe the two-dimensional distribution of the struck parton in the transverse plane, and
on its longitudinal momentum fraction in the proton. The t dependence of exclusive diffractive processes
thus provides unique information beyond the longitudinal momentum spectra encoded in the usual par-
ton densities. The study of the generalized parton distributions is a prime reason to measure DVCS and
exclusive meson production in ep scattering. Detailed discussions and references can be found in the
recent reviews [30, 31].

An observable illustrating the short-distance factorization in meson production at high Q2 is the
ratio of the φ and ρ production cross sections, shown in Fig. 19. At large Q2 the process is described in
terms of a light quark coupling to the photon and of the generalized gluon distribution. Using approxi-
mate flavor SU(3) symmetry between the ρ and φ wave functions, the only difference between the two
channels is then due to different quark charge and isospin factors, which result in a cross section ratio of
2/9.

3.1 High-energy factorization and the dipole picture
So far we have discussed the description of hard exclusive diffraction within short-distance, or collinear
factorization. A different type of factorization is high-energy, or kt factorization, which is based on the
BFKL formalism. Here the usual or generalized gluon distribution appearing in the factorization formu-
lae depends explicitly on the transverse momentum kt of the emitted gluon. In collinear factorization,
this kt is integrated over in the parton distributions and set to zero when calculating the hard-scattering
process (the partons are thus approximated as “collinear” with their parent hadron). Likewise, the me-
son wave functions appearing in kt factorization explicitly depend on the relative transverse momentum
between the quark and antiquark in the meson, whereas this is integrated over in the quark-antiquark
distribution amplitudes (cf. Sect. 3) of the collinear factorization formalism. Only gluon distributions
appear in kt factorization, whereas collinear factorization formulae involve both quark and gluon dis-
tributions (see e.g. Sects. 8.1 and 8.2 in [30] for a discussion of this difference). We note that other
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Fig. 17: Factorization of forward Compton scattering, which is related to the total inclusive structure function
via the optical theorem, ImA(γ∗p → γ∗p) = 1
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∑
X |A(γ∗p → X)|2 ∝ σ(γ∗p → X). The final state of the

inclusive process is obtained by cutting the diagrams along the vertical line. The blobs represent the gluon or quark
distribution in the proton. Graph (b) is absent in the kt factorization formalism (see Sect. 3.1): its role is taken by
graph (a) in the “aligned jet configuration”, where the quark line joining the two photons carries almost the entire
photon momentum.
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Fig. 18: (a) Factorization of deeply virtual Compton scattering, γ∗p→ γp, which can be measured in the exclusive
process ep→ epγ. The blob represents the generalized gluon distribution, with x and x′ denoting the momentum
fractions of the gluons. (b) Factorization of exclusive meson production. The small blob represents the vector
meson wave function. In the collinear factorization formalism, there are further graphs (not shown) involving
quark instead of gluon exchange.
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Fig. 20: The dipole representation of the amplitudes for Compton scattering (a) and for meson production (b),
corresponding to the graphs in Figs. 17a and 18.

factorization schemes have been developed, which combine features of the collinear and kt factorization
formalisms.

The two different types of factorization implement different ways of separating different parts of
the dynamics in a scattering process. The building blocks in a short-distance factorization formula corre-
spond to either small or large particle virtuality (or equivalently to small or large transverse momentum),
whereas the separation criterion in high-energy factorization is the particle rapidity. Collinear and k t
factorization are based on taking different limits: in the former case the limit of large Q2 at fixed xB and
in the latter case the limit of small xB at fixed Q2 (which must however be large enough to justify the
use of QCD perturbation theory). In the common limit of large Q2 and small xB the two schemes give
coinciding results. Instead of large Q2 one can also take a large quark mass in the limits just discussed.

A far-reaching representation of high-energy dynamics can be obtained by casting the results of k t
factorization into a particular form. The different building blocks in the graphs for Compton scattering
and meson production in Figs. 17a and 18 can be rearranged as shown in Fig. 20. The result admits a
very intuitive interpretation in a reference frame where the photon carries large momentum (this may be
the proton rest frame but also a frame where the proton moves fast, see Fig. 14): the initial photon splits
into a quark-antiquark pair, which scatters on the proton and finally forms a photon or meson again. This
is the picture we have already appealed to in Sect. 1.2.

In addition, one can perform a Fourier transformation and trade the relative transverse momentum
between quark and antiquark for their transverse distance r, which is conserved in the scattering on the
target. The quark-antiquark pair acts as a color dipole, and its scattering on the proton is described by
a “dipole cross section” σqq̄ depending on r and on xIP (or on xB in the case of inclusive DIS). The
wave functions of the photon and the meson depend on r after Fourier transformation, and at small r
the photon wave function is perturbatively calculable. Typical values of r in a scattering process are
determined by the inverse of the hard momentum scale, i.e. r ∼ (Q2 +M2

V )−1/2. An important result of
high-energy factorization is the relation

σqq̄(r, x) ∝ r2xg(x) (7)

at small r, where we have replaced the generalized gluon distribution by the usual one in the spirit of the
leading log x approximation. A more precise version of the relation (7) involves the kt dependent gluon
distribution. The dipole cross section vanishes at r = 0 in accordance with the phenomenon of “color
transparency”: a hadron becomes more and more transparent for a color dipole of decreasing size.

The scope of the dipole picture is wider than we have presented so far. It is tempting to apply it
outside the region where it can be derived in perturbation theory, by modeling the dipole cross section
and the photon wave function at large distance r. This has been very been fruitful in phenomenology, as
we will see in the next section.

The dipole picture is well suited to understand the t dependence of exclusive processes, parameter-
ized as dσ/dt ∝ exp(−b|t|) at small t. Figure 21 shows that b decreases with increasing scale Q2 +M2

V
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Fig. 21: The logarithmic slope of the t dependence at t = 0 for different meson production channels, as well as
for non-resonant dipion production.

and at high scales becomes independent of the produced meson. A Fourier transform from momentum
to impact parameter space readily shows that b is related to the typical transverse distance between the
colliding objects, as anticipated by the analogy with optical diffraction in Sect. 1.1. At high scale, the qq̄
dipole is almost pointlike, and the t dependence of the cross section is controlled by the t dependence
of the generalized gluon distribution, or in physical terms, by the transverse extension of the proton. As
the scale decreases, the dipole acquires a size of its own, and in the case of ρ or φ photoproduction,
the values of b reflect the fact that the two colliding objects are of typical hadronic dimensions; similar
values would be obtained in elastic meson-proton scattering.

3.2 Exclusive diffraction in hadron-hadron collisions
The concepts we have introduced to describe exclusive diffraction can be taken over to pp or pp̄ scat-
tering, although further complications appear in these processes. A most notable reaction is exclusive
production of a Higgs boson, pp → pHp, sketched in Fig. 22. The generalized gluon distribution is
a central input in this description. The physics interest, theory description, and prospects to measure
this process at the LHC have been discussed in detail at this workshop [33, 34]. A major challenge in
the description of this process is to account for secondary interactions between spectator partons of the
two projectiles, which can produce extra particles in the final state and hence destroy the rapidity gaps
between the Higgs and final-state protons – the very same mechanism we discussed in Sect. 2.4.

4 Parton saturation
We have seen that diffraction involves scattering on small-x gluons in the proton. Consider the density in
the transverse plane of gluons with longitudinal momentum fraction x that are resolved in a process with
hard scale Q2. One can think of 1/Q as the “transverse size” of these gluons as seen by the probe. The
number density of gluons at given x increases with increasing Q2, as described by DGLAP evolution
(see Fig. 23). According to the BFKL evolution equation it also increases at given Q2 when x becomes
smaller, so that the gluons become more and more densely packed. At some point, they will start to
overlap and thus reinteract and screen each other. One then enters a regime where the density of partons
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Fig. 22: Graph for the exclusive production of a Higgs boson in pp scattering. The horizontal blobs indicate
generalized gluon distributions, and the vertical blob represents secondary interactions between the projectiles (cf.
Fig. 13).

saturates and where the linear DGLAP and BFKL evolution equations cease to be valid. If Q2 is large
enough to have a small coupling αs, we have a theory of this non-linear regime called “color glass
condensate”, see e.g. [35]. To quantify the onset of non-linear effects, one introduces a saturation scale
Q2
s depending on x, such that for Q2 < Q2

s(x) these effects become important. For smaller values of x,
the parton density in the target proton is higher, and saturation sets in at larger values of Q2 as illustrated
in Fig. 23.

Fig. 23: Schematic view of the density of gluons in the transverse plane, as a function of the momentum fraction
x and the resolution scale Q2. Above the line given by Q2

s(x), saturation effects set in.

The dipole picture we introduced in Sect. 3.1 is well suited for the theoretical description of satu-
ration effects. When such effects are important, the relation (7) between dipole cross section and gluon
distribution ceases to be valid; in fact the gluon distribution itself is then no longer an adequate quantity
to describe the dynamics of a scattering process. In a certain approximation, the evolution of the dipole
cross section with x is described by the Balitsky-Kovchegov equation [36], which supplements the BFKL
equation with a non-linear term taming the growth of the dipole cross section with decreasing x.

Essential features of the saturation phenomenon are captured in a phenomenological model for
the dipole cross section, originally proposed by Golec-Biernat and Wüsthoff, see [37, 38]. Figure 24
shows σqq̄ as a function of r at given x in this model. The dipole size r now plays the role of 1/Q in
our discussion above. At small r the cross section rises following the relation σqq̄(r, x) ∝ r2xg(x). At
some value Rs(x) of r, the dipole cross section is so large that this relation ceases to be valid, and σqq̄



starts to deviate from the quadratic behavior in r. As r continues to increase, σqq̄ eventually saturates
at a value typical of a meson-proton cross section. In terms of the saturation scale introduced above,
Rs(x) = 1/Qs(x). For smaller values of x, the initial growth of σqq̄ with r is stronger because the gluon
distribution is larger. The target is thus more opaque and as a consequence saturation sets in at lower r.

A striking feature found both in this phenomenological model [39] and in the solutions of the
Balitsky-Kovchegov equation (see e.g. [40]) is that the total γ∗p cross section only depends on Q2 and
xB through a single variable τ = Q2/Q2

s(xB). This property, referred to as geometric scaling, is well
satisfied by the data at small xB (see Fig. 25) and is an important piece of evidence that saturation effects
are visible in these data. Phenomenological estimates find Q2

s of the order 1 GeV2 for xB around 10−3

to 10−4.

The dipole formulation is suitable to describe not only exclusive processes and inclusive DIS, but
also inclusive diffraction γ∗p → Xp. For a diffractive final state X = qq̄ at parton level, the theory
description is very similar to the one for deeply virtual Compton scattering, with the wave function
for the final state photon replaced by plane waves for the produced qq̄ pair. The inclusion of the case
X = qq̄g requires further approximations [37] but is phenomenologically indispensable for moderate to
small β. Experimentally, one observes a very similar energy dependence of the inclusive diffractive and
the total cross section in γ∗p collisions at givenQ2 (see Fig. 26). The saturation mechanism implemented
in the Golec-Biernat Wüsthoff model provides a simple explanation of this finding. To explain this
aspect of the data is non-trivial. For instance, in the description based on collinear factorization, the
energy dependence of the inclusive and diffractive cross sections is controlled by the x dependence of
the ordinary and the diffractive parton densities. This x dependence is not predicted by the theory.

The description of saturation effects in pp, pA and AA collisions requires the full theory of the
color glass condensate, which contains concepts going beyond the dipole formulation discussed here and
is e.g. presented in [35]. We remark however that estimates of the saturation scale Q2

s(x) from HERA
data can be used to describe features of the recent data from RHIC [41].

5 A short summary
Many aspects of diffraction in ep collisions can be successfully described in QCD if a hard scale is
present. A key to this success are factorization theorems, which render parts of the dynamics accessi-
ble to calculation in perturbation theory. The remaining non-perturbative quantities, namely diffractive
PDFs and generalized parton distributions, can be extracted from measurements and contain specific
information about small-x partons in the proton that can only be obtained in diffractive processes. To
describe hard diffractive hadron-hadron collisions is more challenging since factorization is broken by
rescattering between spectator partons. These rescattering effects are of interest in their own right be-
cause of their intimate relation with multiple scattering effects, which at LHC energies are expected to be
crucial for understanding the structure of events in hard collisions. A combination of data on inclusive
and diffractive ep scattering hints at the onset of parton saturation at HERA, and the phenomenology
developed there is a helpful step towards understanding high-density effects in hadron-hadron collisions.
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The Q2 of these data ranges from 0.045 to 450 GeV2.
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