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Abstract
We discuss the perturbative QCD description of diffractive deep-inelastic scat-
tering, and extract diffractive parton distributions from recent HERA data. The
asymptotic collinear factorisation theorem has important modifications in the
sub-asymptotic HERA regime. In addition to the usual resolved Pomeron con-
tribution, the direct interaction of the Pomeron must also be accounted for. The
diffractive parton distributions are shown to satisfy an inhomogeneous evolu-
tion equation, analogous to the parton distributions of the photon.

1 Diffractive parton distributions from Regge factorisation
It is conventional to extract diffractive parton distribution functions (DPDFs) from diffractive deep-
inelastic scattering (DDIS) data using two levels of factorisation. Firstly, collinear factorisation means
that the diffractive structure function can be written as [1]

F
D(3)
2 (xIP , β,Q

2) =
∑

a=q,g

C2,a ⊗ aD, (1)

where the DPDFs aD = zqD or zgD satisfy DGLAP evolution:

∂aD

∂ lnQ2
=
∑

a′=q,g

Paa′ ⊗ a′D, (2)

and where C2,a and Paa′ are the same hard-scattering coefficients and splitting functions as in inclusive
DIS. The factorisation theorem (1) applies when Q is made large, therefore it is correct up to power-
suppressed corrections. It says nothing about the mechanism for diffraction. What is the exchanged
object with vacuum quantum numbers (‘Pomeron’) which causes the large rapidity gap (LRG) charac-
terising diffractive interactions?

In a second stage [2] Regge factorisation is usually assumed, such that

aD(xIP , z,Q
2) = fIP (xIP ) aIP (z,Q2), (3)

where the Pomeron PDFs aIP = zqIP or zgIP . The Pomeron flux factor fIP is taken from Regge phe-
nomenology,

fIP (xIP ) =

∫ tmin

tcut

dt eBIP t x
1−2αIP (t)
IP . (4)

Here, αIP (t) = αIP (0) + α′IP t, and the parameters BIP , αIP (0), and α′IP should be taken from fits to soft
hadron data. Although the first fits to use this approach assumed a ‘soft’ Pomeron, αIP (0) ' 1.08 [3],
all recent fits require a substantially higher value to describe the data. In addition, a secondary Reggeon
contribution is needed to describe the data for xIP & 0.01. This approach is illustrated in Fig. 1(a),
where the virtualities of the t-channel partons are strongly ordered as required by DGLAP evolution. The
Pomeron PDFs aIP are parameterised at some arbitrary low scale Q2

0, then evolved up to the factorisation
scale, usually taken to be the photon virtuality Q2.
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Fig. 1: (a) Resolved Pomeron contribution in the ‘Regge factorisation’ approach. (b) Resolved Pomeron contribu-
tion in the ‘perturbative QCD’ approach. (c) Direct Pomeron contribution in the ‘perturbative QCD’ approach.

Although this approach has been found to give a good description1 of the DDIS data [4–7], it has
little theoretical justification. The ‘Regge factorisation’ of (3) is merely a simple way of parameterising
the xIP dependence of the DPDFs. Note, however, that the effective Pomeron intercept αIP (0) has been
observed to depend on Q2 [8]. The fact that the required αIP (0) is greater than the ‘soft’ value indicates
that there is a significant perturbative QCD (pQCD) contribution to DDIS.

2 Diffractive parton distributions from perturbative QCD
In pQCD, Pomeron exchange can be described by two-gluon exchange, two gluons being the minimum
number needed to reproduce the quantum numbers of the vacuum. Two-gluon exchange calculations are
the basis for the colour dipole model description of DDIS, in which the photon dissociates into qq̄ or qq̄g
final states. Such calculations have successfully been used to describe HERA data. The crucial question,
therefore, is how to reconcile two-gluon exchange with collinear factorisation as given by (1) and (2).
Are these two approaches compatible?

Generalising the qq̄ or qq̄g final states to an arbitrary number of parton emissions from the photon
dissociation, and replacing two-gluon exchange by exchange of a parton ladder, we have diagrams like
that shown in Fig. 1(b) [9–12]. Again, the virtualities of the t-channel partons are strongly ordered:
µ2

0 � . . . � µ2 � . . . � Q2. The scale µ2 at which the Pomeron-to-parton splitting occurs can vary
between µ2

0 ∼ 1 GeV2 and the factorisation scale Q2. Therefore, to calculate the inclusive diffractive
structure function, FD(3)

2 , we need to integrate over µ2:

F
D(3)
2 (xIP , β,Q

2) =

∫ Q2

µ2
0

dµ2

µ2
fIP (xIP ;µ2) FIP2 (β,Q2;µ2). (5)

Here, the perturbative Pomeron flux factor can be shown to be [12]

fIP (xIP ;µ2) =
1

xIPBD

[
Rg

αS(µ2)

µ
xIP g(xIP , µ

2)

]2

. (6)

The diffractive slope parameter BD comes from the t-integration, while the factor Rg accounts for the
skewedness of the proton gluon distribution [13]. There are similar contributions from sea quarks, where
g(xIP , µ

2) in (6) is replaced by S(xIP , µ
2), together with an interference term. In the fits presented here,

1Note that the H1 2002 NLO fit [4] uses the 2-loop αS with ΛQCD = 200 MeV for 4 flavours. This gives αS values much
smaller than the world average, meaning that the H1 2002 diffractive gluon density is artificially enhanced.
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Fig. 2: Contributions to FD(3)
2 as a function of µ2.

we use the MRST2001 NLO gluon and sea-quark distributions of the proton [14]. The Pomeron structure
function in (5), FIP2 (β,Q2;µ2), is calculated from Pomeron PDFs, aIP (z,Q2;µ2), evolved using NLO
DGLAP from a starting scale µ2 up to Q2, taking the input distributions to be LO Pomeron-to-parton
splitting functions, aIP (z, µ2;µ2) = PaIP (z) [11,12]. At first glance, it would appear that the perturbative
Pomeron flux factor (6) behaves as fIP (xIP ;µ2) ∼ 1/µ2, so that contributions from large µ2 are strongly
suppressed. However, at large µ2, the gluon distribution of the proton behaves as xIP g(xIP , µ2) ∼ (µ2)γ ,
where γ is the anomalous dimension. In the BFKL limit of xIP → 0, γ ' 0.5, so fIP (xIP ;µ2) would be
approximately independent of µ2. The HERA domain is in an intermediate region: γ is not small, but is
less than 0.5. It is interesting to plot the integrand of (5) as a function of µ2, as shown in Fig. 2. Notice
that there is a large contribution from µ2 > 3 GeV2, which is the value of the input scale Q2

0 typically
used in the ‘Regge factorisation’ fits of Sect. 1. Recall that fits using ‘Regge factorisation’ include
contributions from µ2 ≤ Q2

0 in the input distributions, but neglect all contributions from µ2 > Q2
0; from

Fig. 2 this is clearly an unreasonable assumption.

As well as the resolved Pomeron contribution of Fig. 1(b), we must also account for the direct
interaction of the Pomeron in the hard subprocess, Fig. 1(c), where there is no DGLAP evolution in the
upper part of the diagram. Therefore, the diffractive structure function can be written as

F
D(3)
2 =

∑

a=q,g

C2,a ⊗ aD

︸ ︷︷ ︸
Resolved Pomeron

+ C2,IP︸︷︷︸
Direct Pomeron

; (7)

cf. (1) where there is no direct Pomeron contribution. The direct Pomeron coefficient function, C2,IP ,
calculated from Fig. 1(c), will again depend on fIP (xIP ;µ2) given by (6). Therefore, it is formally
suppressed by a factor 1/µ2, but in practice does not behave as such; see Fig. 2.

The contribution to the DPDFs from scales µ > µ0 is

aD(xIP , z,Q
2) =

∫ Q2

µ2
0

dµ2

µ2
fIP (xIP ;µ2) aIP (z,Q2;µ2). (8)

Differentiating (8), we see that the evolution equations for the DPDFs are [12]

∂aD

∂ lnQ2
=
∑

a′=q,g

Paa′ ⊗ a′D + PaIP (z) fIP (xIP ;Q2); (9)



Resolved photon Direct photon

(xγ < 1) (xγ = 1)

Resolved
Pomeron
(zIP < 1)

p

zIP

xIP

jet

jet

γ

xγ

p

zIP

xIP

jet

jet

γ

Direct
Pomeron
(zIP = 1)

jet

jet

γ

xγ

p

xIP

jet

jet

γ

p

xIP

Fig. 3: The four classes of contributions to diffractive dijet photoproduction at LO. Both the photon and the
Pomeron can be either ‘resolved’ or ‘direct’.

cf. (2) where the second term of (9) is absent. That is, the DPDFs satisfy an inhomogeneous evolution
equation [10, 12], with the extra inhomogeneous term in (9) leading to more rapid evolution than in the
‘Regge factorisation’ fits described in Sect. 1. Note that the inhomogeneous term will change the xIP
dependence evolving upwards in Q2, in accordance with the data, and unlike the ‘Regge factorisation’
assumption (3). Again, the inhomogeneous term in (9) is formally suppressed by a factor 1/Q2, but in
practice does not behave as such; see Fig. 2.

Therefore, the diffractive structure function is analogous to the photon structure function, where
there are both resolved and direct components and the photon PDFs satisfy an inhomogeneous evolu-
tion equation, where at LO the inhomogeneous term accounts for the splitting of the point-like photon
into a qq̄ pair. If we consider, for example, diffractive dijet photoproduction, there are four classes of
contributions; see Fig. 3. The relative importance of each contribution will depend on the values of xγ ,
the fraction of the photon’s momentum carried by the parton entering the hard subprocess, and zIP , the
fraction of the Pomeron’s momentum carried by the parton entering the hard subprocess.

3 Description of DDIS data
A NLO analysis of DDIS data is not yet possible. The direct Pomeron coefficient functions, C2,IP , and
Pomeron-to-parton splitting functions, PaIP , need to be calculated at NLO within a given factorisation
scheme (for example, MS). Here, we perform a simplified analysis where the usual coefficient functions
C2,a and splitting functions Paa′ (a, a′ = q, g) are taken at NLO, but C2,IP and PaIP are taken at LO [12].
We work in the fixed flavour number scheme, where there is no charm DPDF. Charm quarks are produced
via γ∗gIP → cc̄ at NLO [15] and γ∗IP → cc̄ at LO [16]. For light quarks, we include the direct Pomeron
process γ∗LIP → qq̄ at LO [12], which is higher-twist and known to be important at large β.



(a) (b)

 = 0.01β  = 0.04β  = 0.10β  = 0.20β  = 0.40β  = 0.65β  = 0.90β

IPx

D
(3

)
rσ 

IPx

)
2

 (GeV2Q

0

0.05  6.5

0

0.05  8.5

0

0.05   12

0

0.05   15

0

0.05   20

0

0.05   25

0

0.05   35

0

0.05   45

0

0.05   60

0

0.05   90

0

0.05  120

-410 -310 -210 -410 -310 -210 -410 -310 -210 -410 -310 -210 -410 -310 -210 -410 -310 -210 -410 -310 -210

1997 H1 data (prel.)
‘‘pQCD’’ fit (all contributions)

Resolved IP contrib.
 contrib.c c→*IPγ
 contrib.q q→IPL*γ

Reggeon contrib.

 = 0.004β  = 0.010β  = 0.032β  = 0.100β  = 0.308β

 = 0.007β  = 0.015β  = 0.047β  = 0.143β  = 0.400β

 = 0.009β  = 0.020β  = 0.062β  = 0.182β  = 0.471β

 = 0.015β  = 0.034β  = 0.104β  = 0.280β  = 0.609β

 = 0.029β  = 0.063β  = 0.182β  = 0.429β  = 0.750β

 = 0.121β  = 0.312β  = 0.604β  = 0.859β

IPx

D
(3

)
rσ 

IPx

)
2

 (GeV2Q

0

0.05

 4.0

0

0.05

   6

0

0.05

   8

0

0.05

  14

0

0.05

  27

0

0.05

  55

-410 -310 -210 -410 -310 -210 -410 -310 -210 -410 -310 -210 -410 -310 -210

 dataX1998/99 ZEUS M
‘‘pQCD’’ fit (all contributions)

Resolved IP contrib.

 contrib.c c→*IPγ

 contrib.q q→IPL*γ

Fig. 4: “pQCD” fits to (a) H1 LRG and (b) ZEUS MX data.

To see the effect of the direct Pomeron contribution and the inhomogeneous evolution, we make
two types of fits:
“Regge” : The ‘Regge factorisation’ approach discussed in Sect. 1, where there is no direct Pomeron

contribution and no inhomogeneous term in the evolution equation.

“pQCD” : The ‘perturbative QCD’ approach discussed in Sect. 2, where these effects are included.

We make separate fits to the recent H1 LRG (prel.) [4] and ZEUS MX [8] σD(3)
r data, applying

cuts Q2 ≥ 3 GeV2 and MX ≥ 2 GeV, and allowing for overall normalisation factors of 1.10 and
1.43 to account for proton dissociation up to masses of 1.6 GeV and 2.3 GeV respectively. Statistical
and systematic experimental errors are added in quadrature. The strong coupling is set via αS(MZ) =
0.1190. We take the input forms of the DPDFs at a scale Q2

0 = 3 GeV2 to be

zΣD(xIP , z,Q
2
0) = fIP (xIP ) Cq z

Aq (1− z)Bq , (10)

zgD(xIP , z,Q
2
0) = fIP (xIP ) Cg z

Ag (1− z)Bg , (11)

where fIP (xIP ) is given by (4), and where αIP (0), Ca, Aa, and Ba (a = q, g) are free parameters. The
secondary Reggeon contribution to the H1 data is treated in a similar way as in the H1 2002 fit [4], using
the GRV pionic parton distributions [17]. Good fits are obtained in all cases, with χ2/d.o.f. = 0.75,
0.71, 0.76, and 0.84 for the “Regge” fit to H1 data, “pQCD” fit to H1 data, “Regge” fit to ZEUS MX

data, and “pQCD” fit to ZEUS MX data respectively. The “pQCD” fits are shown in Fig. 4, including
a breakdown of the different contributions. The DPDFs are shown in Fig. 5. Note that the “pQCD”
DPDFs are smaller than the corresponding “Regge” DPDFs at large z due to the inclusion of the higher-
twist γ∗LIP → qq̄ contribution. Also note that the “pQCD” DPDFs have slightly more rapid evolution
than the “Regge” DPDFs due to the extra inhomogeneous term in the evolution equation (9). There is a
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large difference between the DPDFs obtained from the H1 LRG and ZEUSMX data due to the different
Q2 dependence of these data sets; see also [6, 7].

The predictions from the two “pQCD” fits for the charm contribution to the diffractive structure
function as measured by ZEUS using the LRG method [18] are shown in Fig. 6. Our H1 LRG fit gives a
good description, while our ZEUSMX fit is too small at low β. Note that the direct Pomeron contribution
is significant at moderate β. These charm data points were included in the determination of DPDFs from
ZEUS LPS data [5], but only the resolved Pomeron (γ∗gIP → cc̄) contribution was included and not the
direct Pomeron (γ∗IP → cc̄) contribution. Therefore, the diffractive gluon distribution from the ZEUS
LPS fit [5] needed to be artificially large to fit the charm data at moderate β.



4 Conclusions and outlook
To summarise, diffractive DIS is more complicated than inclusive DIS. Collinear factorisation holds, but
we need to account for the direct Pomeron coupling, leading to an inhomogeneous evolution equation
(9). Therefore, the treatment of DPDFs has more in common with photon PDFs than with proton PDFs.
The H1 LRG and ZEUS MX data seem to have a different Q2 dependence, leading to different DPDFs.
This issue needs further attention.2 For a NLO analysis of DDIS data, the direct Pomeron coefficient
functions, C2,IP , and Pomeron-to-parton splitting functions, PaIP , need to be calculated at NLO. There
are indications [16] that there are large π2-enhanced virtual loop corrections (‘K-factors’) similar to those
found in the Drell–Yan process. As with all PDF determinations, the sensitivity to the form of the input
parameterisation, (10) and (11), and input scale Q2

0 needs to be studied.3 The inclusion of jet and heavy
quark DDIS data, and possibly FD(3)

L if it is measured [19], would help to constrain the DPDFs further.
The extraction of DPDFs from HERA data will provide an important input for calculations of diffraction
at the LHC.
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