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Abstract
We study the effect of absorptive corrections due to parton recombination on
the parton distributions of the proton. A more precise version of the GLRMQ
equations, which account for non-linear corrections to DGLAP evolution, is
derived. An analysis of HERA F2 data shows that the small-x gluon distribu-
tion is enhanced at low scales when the absorptive effects are included, such
that there is much less need for a negative gluon distribution at 1 GeV.

1 Parton recombination at small x
At very small values of x it is expected that the number density of partons within the proton becomes
so large that they begin to recombine with each other. This phenomenon of parton recombination is also
referred to as absorptive corrections, non-linear effects, screening, shadowing, or unitarity corrections,
all leading to saturation. The first perturbative QCD (pQCD) calculations describing the fusion of two
Pomeron ladders into one were made by Gribov-Levin-Ryskin (GLR) [1] and by Mueller-Qiu (MQ) [2].
The GLRMQ equations add an extra non-linear term, quadratic in the gluon density, to the usual DGLAP
equations for the gluon and sea-quark evolution. The evolution of the gluon distribution is then given by
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where R ∼ 1 fm is of the order of the proton radius. The GLRMQ equations account for all ‘fan’ dia-
grams, that is, all possible 2→ 1 ladder recombinations, in the double leading logarithmic approximation
(DLLA) which resums all powers of the parameter αS ln(1/x) ln(Q2/Q2

0).

There has been much recent theoretical activity in deriving (and studying) more precise non-
linear evolution equations, such as the Balitsky-Kovchegov (BK) and Jalilian-Marian–Iancu–McLerran–
Weigert–Leonidov–Kovner (JIMWLK) equations (see [3] for a review). Note that the BK and JIMWLK
equations are both based on BFKL evolution. However, for the most relevant studies in the HERA and
LHC domain (x & 10−4), the predominant theoretical framework is collinear factorisation with DGLAP-
evolved parton distribution functions (PDFs). At very small values of x it might be expected that the
DGLAP approximation would break down, since large αS ln(1/x) (BFKL) terms would appear in the
perturbation series in addition to the αS ln(Q2/Q2

0) terms resummed by DGLAP evolution. However,
it turns out that the resummed NLL BFKL calculations of the gluon splitting function Pgg [4] and the
gluon transverse momentum distribution [5] are rather close to the DGLAP calculations. Moreover, the
convolution Pgg ⊗ g(x,Q2) coincides with the NNLO DGLAP result and is close to the NLO DGLAP
result for x & 10−4 [6]. Hence, in the analysis of current data, it is reasonable to ignore BFKL effects.

If recombination effects are significant, it is therefore important that they be incorporated into
the global DGLAP parton analyses which determine the PDFs from deep-inelastic scattering (DIS) and
related hard-scattering data. Such a programme, based on GLRMQ evolution (which accounts for gluon-
induced screening only), was implemented some years ago [7], before the advent of HERA. The input
gluon and sea-quark distributions were assumed to have a small-x behaviour of the form xg, xS ∼ x−0.5

at an input scale of Q2
0 = 4 GeV2. The inclusion of shadowing effects, both in the form of the input

PDFs and in the GLRMQ evolution, was found to significantly decrease the size of the small-x gluon
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Fig. 1: The behaviour of the gluon and sea-quark distributions at Q2 = 2 GeV2 found in the MRST2004 NLO and
CTEQ6.1M global analyses. The valence-like behaviour of the gluon is evident.

distribution in comparison with the result with no absorptive corrections. A crucial observation is that, at
that time (1990), F2 data were only available for xB ≥ 0.07, and so these results were largely dependent
on the theoretical assumptions made for the starting distributions. However, with HERA, we now have
F2 data down to xB ∼ 10−4 or less, and so the PDFs at small x can be determined directly from the
HERA data.

In fact, the advent of HERA data has led to a puzzling behaviour of the small-x gluon and sea-
quark PDFs at low scales Q2. If we write xg ∼ x−λg and xS ∼ x−λS , then the expectation of Regge
theory is that λg = λS = λsoft for low scales Q . Q0 ∼ 1 GeV, where λsoft ' 0.08 [8] is the power
of s obtained from fitting soft hadron data. At higher Q & 1 GeV, QCD evolution should take over,
increasing the powers λg and λS . However, the current MRST2004 NLO [9] and CTEQ6.1M [10] PDF
sets exhibit a very different behaviour at low scales from that theoretically expected; see Fig. 1. In fact,
the MRST group has found that a negative input gluon distribution at Q0 = 1 GeV is required in all their
NLO DGLAP fits since MRST2001 [11]. The CTEQ group, who take a slightly higher input scale of
Q0 = 1.3 GeV, also find a negative gluon distribution when evolving backwards to 1 GeV.

Since data at small xB now exist, the introduction of the absorptive corrections is expected to
increase the size of the input gluon distribution at small x to maintain a satisfactory fit to the data.
To understand this, note that the negative non-linear term in the GLRMQ equation (1) slows down the
evolution. Therefore, it is necessary to start with a larger small-x gluon distribution at low scalesQ ∼ Q0

to achieve the same PDFs at larger scales required to describe the data. If the non-linear term is neglected,
the input small-x gluon distribution is forced to be artificially small in order to mimic the neglected
screening corrections.

We have anticipated that the introduction of absorptive corrections will enhance1 the small-x gluon
at low scales, and hence could possibly avoid what appears to be anomalous behaviour at small x. Thus,
here, we perform such a study using an abridged version of the MRST2001 NLO analysis [11], improving
on our previous analysis [13]. First, we derive a more precise form of the GLRMQ equations.

1Eskola et al. [12] have found that taking input gluon and sea-quark distributions atQ2 = 1.4 GeV2, then evolving upwards
with the GLRMQ equations based on LO DGLAP evolution, improves the agreement with F2 data at small xB and low Q2

compared to the standard CTEQ sets, and leads to an enhanced small-x gluon distribution for Q2 . 10 GeV2. Note, however,
that there is a large NLO correction to the splitting function Pqg which changes completely the relationship between the quark
and gluon distributions, and so weakens the conclusion of Ref. [12].
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Fig. 2: (a) Absorptive corrections to F2 due to the 2 → 1 Pomeron contribution. (b) Application of the AGK
cutting rules. For simplicity, the upper parton ladder, shown in the right-hand diagram of (a), is hidden inside the
upper blob in each diagram of (b).

2 Non-linear evolution from diffractive DIS
The inclusive proton structure function, F2(xB, Q

2), as measured by experiment, can be approximately
written as a sum of the single Pomeron exchange (DGLAP) contribution and absorptive corrections due
to a 2→ 1 Pomeron merging; see Fig. 2(a). That is,

F2(xB, Q
2) = FDGLAP

2 (xB, Q
2) + ∆F abs

2 (xB, Q
2). (2)

In computing ∆F abs
2 we need to sum over all possible cuts. The Abramovsky-Gribov-Kancheli (AGK)

cutting rules [14] were originally formulated in Reggeon field theory but have been shown to also hold
in pQCD [15]. Application of the AGK rules gives the result that relative contributions of +1, −4,
and +2 are obtained according to whether neither Pomeron, one Pomeron, or both Pomerons are cut;
see Fig. 2(b). Therefore, the sum over cuts is equal to minus the diffractive cut and so the absorp-
tive corrections can be computed from a calculation of the t-integrated diffractive structure function
F

D(3)
2 (xIP , β,Q

2), where β ≡ xB/xIP and xIP is the fraction of the proton’s momentum transferred
through the rapidity gap.

The pQCD description of FD(3)
2 is described in [16, 17], and in a separate contribution to these

proceedings. Working in the fixed flavour number scheme (FFNS), it can be written as

F
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+F
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QCD Pomeron

, (3)

apart from the secondary Reggeon contribution. The separation between the soft Pomeron and QCD
Pomeron is provided by a scale µ0 ∼ 1 GeV. For simplicity, we take µ0 to be the same as the scale Q0

at which the input PDFs are taken in the analysis of F2 data, so µ0 = Q0 = 1 GeV, the value used in
the MRST2001 NLO analysis [11]. The contribution to the absorptive corrections arising from the soft
Pomeron contribution of (3) is already included in the input PDFs, therefore

∆F abs
2 = − 1

1− fp.diss.

∫ 1
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dxIP

[
F

D(3)
2,pert. + F

D(3),cc̄
2,direct + F

D(3)
L,tw.4

]
, (4)



where fp.diss. is the fraction of diffractive events in which the proton dissociates. In practice, we take
fp.diss. = 0.5 and take an upper limit of 0.1 instead of 1 for xIP in (4).2

First consider the contribution to (4) from the F D(3)
2,pert. term.3 It corresponds to a 2 → 1 Pomeron

merging with a cut between the two Pomeron ladders and can be written as

F
D(3)
2,pert.(xIP , β,Q

2) =
∑

a=q,g

C2,a ⊗ aD
pert., (5)

where C2,a are the same coefficient functions as in inclusive DIS. The diffractive PDFs, aD = zqD or
zgD, where z ≡ x/xIP , satisfy an inhomogeneous evolution equation [17]:

aD
pert.(xIP , z,Q

2) =
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Here, fIP (xIP ;Q2) is the perturbative Pomeron flux factor,

fIP (xIP ;µ2) =
1

xIPBD

[
Rg

αS(µ2)

µ
xIP g(xIP , µ

2)

]2

. (8)

The diffractive slope parameter BD comes from the t-integration, while the factor Rg accounts for the
skewedness of the proton gluon distribution [19]. There are similar contributions from (light) sea quarks,
where g in (8) is replaced by S ≡ 2(ū+ d̄+ s̄), together with an interference term. A sum over all three
contributions is implied in (6) and in the second term of (7). The Pomeron PDFs in (6), aIP (z,Q2;µ2),
are evolved using NLO DGLAP from a starting scale µ2 up to Q2, taking the input distributions to be
LO Pomeron-to-parton splitting functions, aIP (z, µ2;µ2) = PaIP (z) [17].

From (2),
a(x,Q2) = aDGLAP(x,Q2) + ∆aabs(x,Q2), (9)

where a(x,Q2) = xg(x,Q2) or xS(x,Q2), and

∆aabs(x,Q2) = − 1

1− fp.diss.

∫ 1

x
dxIP a

D
pert.(xIP , x/xIP , Q

2). (10)

Differentiating (9) with respect to Q2 gives the evolution equations for the (inclusive) gluon and sea-
quark PDFs:

∂a(x,Q2)

∂ lnQ2
=
αS
2π

∑

a′=q,g

Paa′ ⊗ a′ −
1

1− fp.diss.

∫ 1

x
dxIP PaIP (x/xIP ) fIP (xIP ;Q2). (11)

Thus (11) is a more precise version of the GLRMQ equations (1), which goes beyond the DLLA and
accounts for sea-quark recombination as well as gluon recombination. Consider the recombination of
gluons into gluons, for example, in the DLLA where x � xIP , then PgIP = 9/16 [17]. Taking Rg = 1
and fp.diss. = 0, then (11) becomes
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x

dxIP
xIP

[
xIP g(xIP , Q
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]2
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2The value of fp.diss. = 0.5 is justified by a ZEUS comparison [18] of proton-tagged diffractive DIS data with data which
allowed proton dissociation up to masses of 6 GeV, where fp.diss. = 0.46 ± 0.11 was obtained.

3The other two contributions to (4) are described after (13).



Comparing to (1) this is simply the GLRMQ equation with R2 = 8BD. For numerical results we take
BD = 6 (4) GeV−2 for light (charm) quarks, which would correspond to R =

√
8BD = 1.4 (1.1) fm.

The procedure for incorporating absorptive corrections into a (NLO) global parton analysis (in the
FFNS) is as follows:

1. Parameterise the x dependence of the input PDFs at a scale Q0 ∼ 1 GeV.
2. Evolve the PDFs xg(x,Q2) and xS(x,Q2) using the non-linear evolution equation (11). (The

non-singlet distributions are evolved using the usual linear DGLAP equations.)
3. Compute

F2(xB, Q
2) =

∑

a=q,g

C2,a ⊗ a −
1

1− fp.diss.

∫ 1

xB

dxIP

[
F

D(3),cc̄
2,direct + F

D(3)
L,tw.4

]
, (13)

and compare to data. Here, the two terms inside the square brackets are beyond collinear fac-
torisation, that is, they cannot be written as a convolution of coefficient functions with the PDFs.
The first term inside the square brackets corresponds to the process γ∗IP → cc̄. The second term
corresponds to the process γ∗IP → qq̄, for light quarks with a longitudinally polarised photon.
These contributions are calculated as described in Ref. [17].

As usual, these three steps should be repeated with the parameters of the input PDFs adjusted until an
optimal fit is obtained. This procedure is our recommended way of accounting for absorptive corrections
in a global parton analysis. However, in practice, available NLO DGLAP evolution codes, such as the
QCDNUM [20] program, are often regarded as a ‘black box’, and it is not trivial to modify the usual
linear DGLAP evolution to the non-linear evolution of (11). Therefore, we adopt an alternative iterative
procedure which avoids the explicit implementation of non-linear evolution, but which is equivalent to
the above procedure.

3 Effect of absorptive corrections on inclusive PDFs
We model our analysis of HERA F2 data [21] on the MRST2001 NLO analysis [11], which was the first
in which a negative gluon distribution was required at the input scale of Q0 = 1 GeV. (The more recent
MRST sets have not changed substantially at small x.) We apply cuts xB ≤ 0.01, Q2 ≥ 2 GeV2, and
W 2 ≥ 12.5 GeV2, leaving 280 data points. The input gluon and sea-quark distributions are taken to be

xg(x,Q2
0) = Ag x

−λg(1− x)3.70(1 + εg
√
x+ γgx) − A− x

−δ−(1− x)10, (14)

xS(x,Q2
0) = AS x

−λS (1− x)7.10(1 + εS
√
x+ γSx), (15)

where the powers of the (1−x) factors are taken from [11], together with the valence-quark distributions,
uV and dV , and ∆ ≡ d̄− ū. The Ag parameter is fixed by the momentum sum rule, while the other nine
parameters are allowed to go free. Since we do not fit to DIS data with xB > 0.01, we constrain the input
gluon and sea-quark distributions, and their derivatives with respect to x, to agree with the MRST2001
NLO parton set [11] at x = 0.2. This is done by including the value of these MRST PDFs at x = 0.2,
and their derivatives, as data points in the fit, with an error of 10% on both the value of the MRST PDFs
and their derivatives. Therefore, the PDFs we obtain are not precisely constrained at large x, but this
paper is primarily concerned with the small-x behaviour of the PDFs.

The procedure we adopt is as follows:

(i) Start by performing a standard NLO DGLAP fit to F2 data with no absorptive corrections.
(ii) Tabulate ∆F abs

2 , given by (4), and ∆aabs, given by (10), using PDFs g(xIP , µ2) and S(xIP , µ
2)

obtained from the previous fit.
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Fig. 3: (a) The gluon distribution obtained from fits to F2 data, before and after absorptive corrections have been
included. (b) The effect of successive iterations on the gluon distribution obtained from fits to F2, taking a positive
definite input gluon at 1 GeV. Each iteration introduces another level of 2→ 1 Pomeron mergings.

(iii) Perform a standard NLO DGLAP fit to ‘corrected’ data, F DGLAP
2 = F2 −∆F abs

2 , to obtain PDFs
aDGLAP. Then correct these PDFs to obtain a = aDGLAP + ∆aabs. These latter PDFs a then
satisfy the non-linear evolution equations (11).

(iv) Go to (ii).

Each successive iteration of steps (ii) and (iii) introduces another level of 2 → 1 Pomeron mergings, so
that eventually all the ‘fan’ diagrams are included, achieving the same effect as the procedure described
at the end of Section 2.

Note that the correction to the PDFs, a = aDGLAP + ∆aabs, in each step (iii), was omitted in
our previous analysis [13]. Consequently, the effect of the absorptive corrections on the PDFs at large
scales was overestimated. Also in [13], the known LO PaIP (z) were multiplied by free parameters (‘K-
factors’), determined from separate fits to diffractive DIS data, in an attempt to account for higher-order
pQCD corrections to the LO Pomeron-to-parton splitting functions. However, since these K-factors took
unreasonable values, with some going to zero, here we have chosen to fix them to 1. Therefore, the
updated analysis, presented here, does not require a simultaneous fit to the diffractive DIS data.

In Fig. 3(a) we show the gluon distribution at scales Q2 = 1, 4, 10, and 40 GeV2 obtained from
fits before and after absorptive corrections have been included. Both fits are almost equally good with
χ2/d.o.f. values of 0.86 and 0.87 for the fits without and with absorptive corrections respectively. At low
Q2 the absorptive corrections give an increased gluon distribution at small x, apart from at x . 10−4

where there are only a few data points and where additional absorptive effects (Pomeron loops) may
become important. The non-linear term of (11) slows down the evolution, so that by 40 GeV2 the two
gluon distributions are roughly equal; see Fig. 3(a).

We repeated the fits without the negative term in the input gluon distribution, that is, without
the second term in (14). When absorptive corrections were included, almost the same quality of fit was
obtained (χ2/d.o.f. = 0.90), while without absorptive corrections the fit was slightly worse (χ2/d.o.f. =
0.95). We conclude that absorptive corrections lessen the need for a negative gluon distribution atQ2 = 1
GeV2. The gluon distributions obtained from six successive iterations of steps (ii) and (iii) above are
shown in Fig. 3(b). The convergence is fairly rapid, with only the first three iterations having a significant
effect, that is, the ‘fan’ diagrams which include 8→ 4→ 2→ 1 Pomeron mergings.

Although we have seen that the inclusion of absorptive corrections has reduced the need for a
negative gluon, it has not solved the problem of the valence-like gluon. That is, the gluon distribution
at low scales still decreases with decreasing x, whereas from Regge theory it is expected to behave as



xg ∼ x−λsoft with λsoft ' 0.08. We have studied several possibilities of obtaining a satisfactory fit with
this behaviour [13]. The only modification which appears consistent with the data (and with the desired
λg = λS equality) is the inclusion of power-like corrections, specifically, a global shift in all scales by
about 1 GeV2. (Note that a similar shift in the scale is required in the dipole saturation model [22].)
However, we do not have a solid theoretical justification for this shift. Therefore, a more detailed, and
more theoretically-motivated, investigation of the effect of power corrections in DIS is called for.
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