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Abstract
An overview on activities to determine unintegrated parton density functions
is given and the concept and need for unintegrated PDFs is discussed. It is also
argued that it is important to reformulate perturbative QCD results in terms of
fully unintegrated parton densities, differential in all components of the parton
momentum. Also the need for non-linear BFKL evolution is discussed and
results using the BK equation supplemented by DGLAP corrections at short
distances is reviewed. Finally the use unintegrated generalized parton distri-
butions for hard diffractive processes is discussed.

1 Unintegrated parton density functions1

The parton distributions of hadrons still cannot be calculated from first principles, but have to be de-
termined experimentally. However, once the initial distributions f 0

i (x, µ2
0) at the hadronic scale (µ2 ∼

1 GeV2) are determined, different approximations allow to calculate the parton density functions (PDFs)
for different kinematic regions:

– DGLAP [1–4] describes the evolution with the scale µ2

– BFKL [5–7] describes the evolution in the longitudinal momenta x
– CCFM [8–11] describes the evolution in an angular ordered region of phase space while reproduc-

ing DGLAP and BFKL in the appropriate asymptotic limits

The different evolution equations attempt to describe different regions of phase space on the basis of in
perturbative QCD (pQCD).

1.1 Introduction to uPDFs and k⊥ factorization
In the collinear factorization ansatz the cross sections are described by x-dependent density functions
fi(x, µ

2) of parton i at a given factorization scale µ convoluted with an (on-shell) coefficient function
(matrix element):

σ(a+ b→ X) =

∫
dx1dx2fi(x1, µ

2)fj(x2, µ
2)σ̂ij(x1, x2, µ

2) (1)

with σ̂ij(x1, x2, µ
2) being the hard scattering process for the partons i+j → X . In this equation we have

left implicit all external kinematic variables, keeping only the variables used in the parton densities. This
ansatz is very successful in describing inclusive cross sections, such as the structure function F2(x,Q2)
at HERA or the inclusive production of vector bosons or Drell-Yan in proton proton collisions. The
free parameters of the starting distributions f 0

i (x, µ2
0) are determined such that after a DGLAP evolution

to the scale µ2 = Q2 and convolution with the coefficient functions the measured structure function
1Authors: Hannes Jung and Leif Lönnblad.



F2(x,Q2) at HERA (and, usually, some other cross sections, e.g., in hadron-hadron and neutrino-hadron
scattering) are best described.

However, as soon as, for example, final-state processes are considered, the collinear factorization
ansatz becomes more and more unreliable, because neglecting the transverse momenta of the partons
during the (DGLAP) evolution leads to inconsistencies, as will be discussed in more detail in section 2.
Collinear factorization is only appropriate when (a) the transverse momentum (and virtuality) of the
struck parton(s) can be neglected with respect to Q, and (b) the integrals over these variables can be
treated as independent and unrestricted up to the scale Q. (Certain complications concerning high trans-
verse momentum partons are correctly treated by NLO and higher corrections to the hard scattering.)
When these requirements are not met, a more general treatment using unintegrated parton densities
(uPDFs) is better.

For example, in the small x regime, when the transverse momenta of the partons are of the same
order as their longitudinal momenta, the collinear approximation is no longer appropriate and high energy
or k⊥ - factorization has to applied, with the appropriate BFKL or CCFM evolution equations. Cross
sections are then k⊥- factorized [12–15] into an off-mass-shell (k⊥- dependent) partonic cross section
σ̂(x1, x2, k⊥1, k⊥2) and a k⊥- unintegrated parton density function (uPDF) F(z, k⊥):

σ =

∫
dx1dx2d

2k⊥1d
2k⊥2σ̂ij(x1, x2, k⊥1, k⊥2)F(x1, k⊥1)F(x2, k⊥2) (2)

The unintegrated gluon density F(z, k⊥) is described by the BFKL evolution equation in the region of
asymptotically large energies (small x). It is important to note that only when the k⊥dependence of
the hard scattering process σ̂ can be neglected, i.e. if σ̂(x1, x2, k⊥1, k⊥2) ∼ σ̂(x1, x2, 0, 0), then the
k⊥integration can be factorized and an expression formally similar to eq.(1) is obtained.

An appropriate description valid for both small and large x, is given by the CCFM evolution
equation, resulting in an unintegrated gluon densityA(x, k⊥, µ), which is a function also of the additional
evolution scale µ. This scale is connected to the factorization scale in the collinear approach.

Further examples where uPDFs are needed are the Drell-Yan and related processes at low trans-
verse momentum, as in the CSS formalism [16]. However, the relation between CSS method (which
does not need small x) and k⊥-factorization of the BFKL/CCFM kind (for small x) has not yet been
properly worked out.

1.2 Extraction and determination of uPDFs
In this section we will review how measurements of uPDFs have been extracted from DIS data at small x,
mostly from the inclusive structure function F2. For measurements of the uPDFs in Drell-Yan processes
using the CSS formalism, see [17].

From the DIS data, the uPDF can be obtained by adjusting the non-perturbative input distribu-
tion f0

i (x, µ2
0) and the free parameters of the perturbative evolution such that after convolution with the

appropriate off-shell matrix element (according to eq.(2)) a measured cross section is best described.

Applying k⊥-factorization to determine the uPDF from DIS data until now mainly the inclusive
structure function measurements of F2(x,Q2) at HERA have been used. The exceptions are those which
are simply derivatives of integrated PDFs, which then neglects fully the transverse momentum depen-
dence of the matrix element. Extracting a uPDF from the integrated PDF is appropriate only if the
k⊥-dependence of the hard scattering process σ̂ in eq.(2) can be neglected. In addition, contributions
from k⊥ > µ, which are present in a full calculation, are entirely neglected. It thus can only provide
an estimate of the proper kinematics in the collinear approach, which is otherwise fully neglected when
using integrated PDFs.
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Fig. 1: Comparison of different uPDFs at µ = 10 GeV.

Here we compare some of these parameterizations which have been obtained in different ways:

– CCFM set A0 was obtained using CCFM evolution in [18, 19].
– LDC standard was similarly obtained in [20] using LDC evolution [21], which is a reformulation

and generalization of CCFM.
– KKSL [22] was obtained from a combined BFKL and DGLAP evolution following [23].
– GLLM [24] was obtained applying the BK equation to HERA F2 measurements, as described in

Section 3.
– KMR is one of the more advanced derivatives of integrated PDFs, using Sudakov form factors

[25].

In Fig. 1 we show a comparison of the different uPDFs as a function of x and k⊥at a factorization
scale µ = 10 GeV. All the parameterizations are able to describe the measured F2(x,Q2) in the small
x range reasonably well, with a χ2/ndf ∼ 1. In Fig. 2 the same uPDFs are compared at a factorization
scale which is relevant at LHC energies, e.g. for inclusive Higgs production (µ = 120 GeV). One should
note that the uPDFs from KKSL and GLLM have no explicit factorization scale dependence, therefore
they are the same as in Fig 1.

3



10
-4

10
-3

10
-2

10
-110

-5

10
-4

10
-3

10
-2

10
-1

 x

xA
(x

,k
t2 ,µ

2 ) CCFM setA0
KKSL

10
-4

10
-3

10
-2

10
-1

 x

GLLM
KMR

10
-4

10
-3

10
-2

10
-1

1
 x

ldc-standard

10
-1

1 10 10
210

-6
10

-5
10

-4
10

-3
10

-2
10

-1
1

 kt
2 (GeV2)

xA
(x

,k
t2 ,µ

2 ) CCFM setA0
KKSL

10
-1

1 10 10
2

 kt
2 (GeV2)

GLLM
KMR

10
-1

1 10 10
2

10
3

 kt
2 (GeV2)

ldc-standard

Fig. 2: Comparison of different uPDFs at µ = 120 GeV.

1.3 Extrapolation to LHC energies
All the parameterizations of uPDFs considered in this report give a fairly good fit to HERA F2 data. This
means that they are well constrained mainly in the region of small x and relatively small Q2, where the
bulk of the HERA data is concentrated. For higher x and Q2, a fit to HERA data is less constraining,
and indeed some of the parameterizations based on the CCFM and LDC evolution of the gluon alone are
only fitted in the small-x region (typically x < 0.01, Q2 < 100 GeV2).

When evolving the uPDFs to apply them to the processes of main interest at the LHC, such as
Higgs production, this is a serious concern. Although the x-values in such processes are typically below
0.01, the scales involved are of the order of 104 GeV2 or more. Through the evolution one then becomes
sensitive to larger x-values at lower scales where the current parameterizations are less constrained.

A notable exception is the KMR [25] densities which are obtained from a global fit of integrated
PDFs, which should give reliable prediction at LHC at least for integrated observables such as the inclu-
sive Higgs cross section. In contrast, it was shown in [20] that the CCFM [8–11] and LDC [21] evolved
uPDFs have unreasonably large uncertainties for such cross sections. On the other hand it was also
shown in [20] that there are some questions about the constraint of the actual k⊥ distribution of the KMR
uPDFs resulting eg. in a too soft p⊥ spectrum of W or Z production at the Tevatron for small transverse

4



10
-2

10
-1

1

0 2 4 6 8 10 12

 d
N

/d
 k

t

10
-2

10
-1

1

0 2 4 6 8 10 12

10
-2

10
-1

1

0 2 4 6 8 10 12

10
-2

10
-1

1

0 2 4 6 8 10 12

10
-2

10
-1

1

0 2 4 6 8 10 12

kt (GeV)

Fig. 3: k⊥distribution in different Q2 bins used in F2(x,Q2) at HERA.
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Fig. 4: Diagram of charm photoproduction, showing the sensitivity to the gluon transverse momentum

momenta. Hence, although the KMR prediction for inclusive quantities may be reliable at the LHC, the
predictions of eg. the detailed distribution of low-p⊥ Higgs may be questionable.

What is needed is clearly to obtain fits of the uPDFs, not only to HERA F2 data, but also to
observables more sensitive to higher x and Q2 values, as well as to observables directly sensitive to the
k⊥ distribution. To obtain such global fits there is a need for both theoretical and phenomenological
developments. Examples of the former is the inclusion of quarks in the CCFM evolution, while the latter
involves the development of k⊥-sensitive observables, where HERA data at small x, such as forward jet
or heavy quark production, will play an important role, as discussed in the following.

1.4 Global uPDF fits
Until now the uPDFs obtained from DIS were only determined and constrained by the inclusive structure
function F2(x,Q2). It is clear that the inclusive measurements are not very sensitive to the details of the
k⊥dependence. In Fig. 3 we show the k⊥distribution of the gluon in γ∗g∗ → qq̄ which is the relevant
process for F2 at small x. The k⊥-distributions in Fig. 3 are obtained with CASCADE [26, 27] using the
CCFM uPDFs. The bins in Q2 are typical for HERA F2 measurements. It is interesting to observe that
even at large Q2 essentially only the small k⊥region is probed by F2.

A larger lever arm for the k⊥distribution can be obtained with photoproduction of D∗ + jet events
at HERA. In Fig. 4 the relevant diagram is shown. The quantity xγ , normally designed to separate
direct from resolved photon processes, can be also used to distinguish small and large k⊥- regions. The
region of large xγ corresponds to measuring jets coming from the quark-box. The region of small xγ
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Fig. 5: k⊥distribution in different xγ bins obtained from D∗+jet photo-production at HERA.

corresponds to the situation where one of the jets originates from a gluon, as indicated in Fig. 4. Thus,
the transverse momentum of the gluon i can be probed, as shown in Fig. 5 for two different regions of
xγ using CASCADE . It is interesting to note that the average k⊥distribution for bottom production at the
Tevatron is similar to what it shown in Fig. 5.

To further constrain the uPDF it would be desirable to perform a common fit to inclusive measure-
ments like F2 and simultaneously to final state measurements.

Once the data sets and the sensitivity to the uPDFs have been identified, a systematic error treat-
ment of the data used in the uPDF fits can be performed. Until now, the uPDFs are not really the result
of a fit but rather a proof that the uPDF is consistent with various measurements.

A uPDF fit would require a systematic variation of the parameters used to specify the non-
perturbative input gluon distribution as well as a systematic treatment of the experimental systematic
uncertainties. Only then an uncertainty band of the uPDFs can be given. To consider the uncertainty of
the uPDF given from the spread of different available parameterizations is a very rough estimate.

1.5 Outlook and Summary
Clearly, the extraction of uPDFs from data is still in its infancy, especially if compared to the well
developed industry of fitting integrated PDFs. The uPDFs are only leading order parameterizations, they
have mainly been fitted to F2 data at small x, and besides the KMR and LDC parameterizations, no
attempts have been made to obtain unintegrated quark densities. Taken together, this means that the
applicability to LHC processes are uncertain. However, the field is maturing and we hope to soon be able
to do more global uPDF fits which will greatly enhance the reliability of the predictions for the LHC. In
doing so the small-x data from HERA will be very important, but also eg. Tevatron data will be able to
provide important constraints.

2 Need for fully unintegrated parton densities2

2.1 Introduction
Conventional parton densities are defined in terms of an integral over all transverse momentum and vir-
tuality for a parton that initiates a hard scattering. While such a definition of an integrated parton density
is appropriate for very inclusive quantities, such as the ordinary structure functions F1 and F2 in DIS,
the definition becomes increasingly unsuitable as one studies less inclusive cross sections. Associated

2Authors: John Collins and Hannes Jung.
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Fig. 6: (a) and (b): comparison between use of simple LO parton model approximation and of the use of k⊥
densities for the pT of cc̄ pairs in photoproduction, and for the xγ . (c) and (d): comparison of use of k⊥ densities
and full simulation.

with the use of integrated parton densities are approximations on parton kinematics that can readily lead
to unphysical cross sections when enough details of the final state are investigated.

We propose that it is important to the future use of pQCD that a systematic program be undertaken
to reformulate factorization results in terms of fully unintegrated densities, which are differential in both
transverse momentum and virtuality. These densities are called “doubly unintegrated parton densities”
by Watt, Martin and Ryskin [28, 29], and “parton correlation functions” by Collins and Zu [30]; these
authors have presented the reasoning for the inadequacy, in different contexts, of the more conventional
approach. The new methods have their motivation in contexts such as Monte-Carlo event generators
where final-state kinematics are studied in detail. Even so, a systematic reformulation for other processes
to use unintegrated densities would present a unified methodology.

These methods form an extension of k⊥-factorization. See Sec. 1 for a review of k⊥-factorization,
which currently involves two different formalisms, the BFKL/CCFM methods [5–11] and the CSS
method [16].

2.2 Inadequacy of conventional PDFs
The problem that is addressed is nicely illustrated by considering photoproduction of cc̄ pairs. In Figs. 6,
we compare three methods of calculation carried out within the CASCADE event generator [26, 27]:

– Use of a conventional gluon density that is a function of parton x alone.
– Use of a k⊥ density that is a function of parton x and k⊥. These are the “unintegrated parton

densities” (uPDFs) that are discussed in Sec. 1
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Fig. 7: Photon-gluon fusion.

– Use of a doubly unintegrated density that is a function of parton x, k⊥ and virtuality, that is, of the
complete parton 4-momentum.

The partonic subprocess in all cases is the lowest order photon-gluon-fusion process γ + g −→ c + c̄
(Fig. 7). Two differential cross sections are plotted: one as a function of the transverse momentum of the
cc̄ pair, and the other as a function of the xγ of the pair. By xγ is meant the fractional momentum of the
photon carried by the cc̄ pair, calculated in the light-front sense as

xγ =

∑
i=c,c̄(Ei − pz i)

2yEe
=
p−cc̄
q−
.

Here Ee is the electron beam energy and the coordinates are oriented so that the electron and proton
beams are in the −z and +z directions respectively.

In the normal parton model approximation for the hard scattering, the gluon is assigned zero
transverse momentum and virtuality, so that the cross section is restricted to pTcc̄ = 0 and xγ = 1, as
shown by the solid lines in Fig. 6(a,b). When a k⊥ dependent gluon density is used, quite large gluonic
k⊥ can be generated, so that the pTcc̄ distribution is spread out in a much more physical way, as given by
the dashed line in Fig. 6(a). But as shown in plot (b), xγ stays close to unity. Neglecting the full recoil
mass mrem (produced in the shaded subgraph in Fig 7) is equivalent of taking k2 = −k2

⊥/(1 − x) with
k2 being the virtuality of the gluon in Fig. 7, k⊥ its transverse momentum and x its light cone energy
fraction. This gives a particular value to the gluon’s k−. When we also take into account the correct
virtuality of gluon, there is no noticeable change in the pTcc̄ distribution — see Fig. 6(c) (dashed line) —
since that is already made broad by the transverse momentum of the gluon. But the gluon’s k− is able
to spread out the xγ distribution, as in Fig. 6(d) with the dashed line. This is equivalent with a proper
treatment of the kinematics and results in k2 = −(k2

⊥ + xm2
rem)/(1 − x), where mrem is the invariant

mass of the beam remnant, the part of the final state in the shaded blob in Fig. 7. This change can be
particularly significant if x is not very small.

Note that if partons are assigned approximated 4-momenta during generation of an event in a MC
event generator, the momenta need to be reassigned later, to produce an event that conserves total 4-
momentum. The prescription for the reassignment is somewhat arbitrary, and it is far from obvious what
constitutes a correct prescription, especially when the partons are far from a collinear limit. A treatment
with fully unintegrated PDFs should solve these problems.

If, as we claim, an incorrect treatment of parton kinematics changes certain measurable cross
sections by large amounts, then we should verify directly that there are large discrepancies in the distri-
butions in partonic variables themselves. We see this in Fig. 8. Graph (a) plots the gluonic transverse
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Fig. 8: Comparison of distributions in partonic variables between calculations with full parton kinematics and with
ordinary unintegrated PDFs.

momentum divided by the charm-pair mass. As is to be expected, the typical values are less than one, but
there is a long tail to high values. But the use of full parton kinematics does not have much of an effect,
the unintegrated parton distributions already providing realistic distributions in transverse momentum.

On the other hand, a simple collinear approximation for showering sets the remnant mass,mrem, to
zero. As can be seen from the formulae for the gluon virtuality, this only provides a good approximation
to the gluon kinematics if mrem is much less than k⊥. In reality, as we see from graph (b), there is a long
tail to large values of mrem/k⊥, and the tail is much bigger when correct kinematics are used. A more
correct comparison uses xm2

rem, with an extra factor of x. Even then, there is a large effect, shown in
graph (c). The vertical scale is logarithmic, so the absolute numbers of events are relatively small, but
the tail is broad. Finally, graph (d) shows that the distribution in mrem itself is very broad, extending to
many tens of GeV. This again supports the argument that unless a correct treatment of parton kinematics
is made, very incorrect results are easily obtained.

It is important to note that, for the cross sections themselves, the kinematic variables used in Fig. 6
are normal ones that are in common use. Many other examples are easily constructed. Clearly, the use of
the simple parton-model kinematic approximation gives unphysically narrow distributions. The correct
physical situation is that the gluon surely has a distribution in transverse momentum and virtuality, and
for the considered cross sections neglect of parton transverse momentum and virtuality leads to wrong
results. It is clearly better to have a correct starting point even at LO, for differential cross sections such
as we have plotted.
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2.3 Kinematic approximations
The standard treatment of parton kinematics involves replacing the incoming parton momentum k by its
plus component only: kµ 7→ k̂µ ≡ (k+, 0, 0T ). There are actually two parts to this. The first is to neglect
the − and transverse components of k with respect to the large transverse momenta in the calculation of
the numerical value of the hard-scattering amplitude; this is a legitimate approximation, readily corrected
by higher order terms in the hard scattering. The second part is to change the kinematics of the final-state
particles, p1 and p2, so that their sum is q plus the approximated gluon momentum. It is this second
part that is problematic, for it amounts to the replacement of the momentum conservation delta function
δ(4)(k + q − p1 − p2) by δ(4)(k̂ + q − p1 − p2). These delta-functions are infinitely different, point-
by-point. Only when integrated with a sufficiently smooth test function can they be regarded as being
approximately the same, as in a fully inclusive cross section.

In an event generator, the effect is to break momentum conservation, which is restored by an ad
hoc correction of the parton kinematics. Note that the change of parton kinematics is only in the hard
scattering, i.e., in the upper parts of the graphs. Parton kinematics are left unaltered within the parton
density part, and the integrals over k⊥ and virtuality are part of the standard definition of integrated
PDFs.

The situation is ameliorated by inclusion of NLO terms, and perhaps also by some kind of resum-
mation. But these do not correct the initial errors in the approximation, and lead to a very restricted sense
in which the derivation of the cross section can be regarded as valid. Furthermore, when much of the
effect of NLO terms is to correct the kinematic approximations made in LO, this is an inefficient use of
the enormous time and effort going into NLO calculations. A case in point is the BFKL equation, where
70% of the (large) NLO corrections are accounted for [31] by the correction of kinematic constraints in
the LO calculation.

2.4 Conclusions
The physical reasoning for the absolute necessity of fully unintegrated densities is, we believe, unques-
tionable. Therefore it is highly desirable to reformulate perturbative QCD methods in terms of doubly
unintegrated parton densities from the beginning. A full implementation will be able to use the full power
of calculations at NLO and beyond.

Among other things, a full implementation, as in [30], will provide extra factorization formulae
for obtaining the values of the unintegrated densities at large parton transverse momentum and virtuality.
This will incorporate all possible perturbatively calculable information, so that the irreducible nonpertur-
bative information, that must be obtained from data, will be at low transverse momentum and virtuality.
In addition, the implementation will quantify the relations to conventional parton densities. With the
most obvious definitions, the integrated PDFs are simple integrals of the unintegrated densities. How-
ever, in full QCD a number of modifications are required [30,32], so that the relations between integrated
and unintegrated PDFs are distorted.

The fact that we propose new and improved methods does not invalidate old results in their domain
of applicability. The work of Watt, Martin and Ryskin, and of Collins and Zu provides a start on this
project; but much remains to be done to provide a complete implementation in QCD; for example, there
is as yet no precise, valid, and complete gauge-invariant operator definition of the doubly unintegrated
densities in a gauge theory.

The outcome of such a program should have the following results:

1. Lowest order calculations will give a kinematically much more realistic description of cross sec-
tions. This may well lead to NLO and higher corrections being much smaller numerically than
they typically are at present, since the LO description will be better.
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2. It will also obviate the need for separate methods (resummation or the CSS technique), which are
currently applied to certain individual cross sections like the transverse-momentum distribution for
the Drell-Yan process. All these and others will be subsumed and be given a unified treatment.

3. A unified treatment will be possible for both inclusive cross sections using fixed order matrix
element calculations and for Monte-Carlo event generators.

4. For a long-term theoretical perspective, the doubly unintegrated distributions will interface to
methods of conventional quantum many-body physics much more easily than regular parton den-
sities, whose definitions are tuned to their use in ultra-relativistic situations.

This program is, of course, technically highly nontrivial if it is to be used in place of conventional
methods with no loss of predictive power. A start is made in the cited work.

Among the main symptoms of the difficulties are that the most obvious definition of a fully un-
integrated density is a matrix element of two parton fields at different space-time points, which is not
gauge-invariant. It is often said that the solution is to use a light-like axial gauge A+ = 0. However,
in unintegrated densities, this leads to divergences — see [32] for a review — and the definitions need
important modification, in such a way that a valid factorization theorem can be derived.

We also have to ask to what extent factorization can remain true in a generalized sense. Hadron-
hadron collisions pose a particular problem here, because factorization needs a quite nontrivial cancel-
lation arising from a sum over final-state interactions. This is not compatible with simple factorization
for the exclusive components of the cross section, and makes a distinction between these processes and
exclusive components of DIS, for example.

3 PDF extrapolation to LHC energies based on combined BK/DGLAP equations 3

3.1 Introduction
In recent years it became clear that the DGLAP evolution is likely to fail in certain kinematics associated
with the low x domain. This might be a dangerous problem for certain DGLAP based predictions made
for the LHC. The reasons for the failure are well known.

– DGLAP predicts a very steep rise of gluon densities with energy. If not suppressed this rise will
eventually violate unitarity.

– The leading twist evolution breaks down when higher twists become of the same order as the
leading one. We have to recall here that higher twists are estimated to rise with energy much faster
than the leading one [33].

– The DGLAP evolution is totally unable to describe physics of low photon virtualities.

It is most important to stress that NLO corrections are in principal unable to solve any of the above
problems, though they can potentially help to delay their onset.

Fortunately, a solution to the low x problem does exist. We have to rely on a nonlinear evolution
based on the BFKL dynamics. So far the best candidate on the market is the Balitsky-Kovchegov (BK)
equation [34, 35], which is a nonlinear version of the LO BFKL equation. Compared to the DGLAP
equation it has the following advantages:

– it accounts for saturation effects due to high parton densities.
– it sums higher twist contributions.
– it allows an extrapolation to large distances.

Though the BK evolution takes care of the low x domain, it misses the essential part of the short
distance physics correctly accounted for by the DGLAP evolution. The reason is that the BFKL kernel

3Author: Michael Lublinsky.
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involves the 1/z part only of the full gluon-gluon splitting function Pgg(z). Thus we have to develop
a scheme which in a consistent manner would use elements of both the equations. Such scheme was
proposed in Ref. [36] and realized in a successful fit to F2 data in Ref. [37].

One of the main problems of the DGLAP evolution is a necessity to specify the x dependence
of the distributions in the initial conditions of the evolution. The scheme which we propose generally
avoids this problem and thus can be used for future more elaborated analysis including NLO corrections
and the quark sector.

At low x it is very convenient to use the dipole picture. In this approach the structure function F2

can be expressed through the universal dipole cross section σdipole:

F2(y,Q2) =
Q2

4π2

∫
d2 r

∫
d z P γ

∗
(Q2; r, z) σdipole(r, y) . (3)

with the probability to find a dipole of the transverse size r in the photon‘s wavefunction given by

P γ
∗
(Q2; r, z)2 =

Nc

2π2

3∑

f=1

Z2
f

{
(z2 + (1− z)2) a2 K2

1 (a r) + 4Q2 z2 (1− z)2 K2
0 (a r)

}
,

where a2 = Q2z(1− z), Zf are the quark charges, and Ki the standard modified Bessel functions.

The dipole cross section is determined through the evolution of the imaginary part of the dipole
target elastic amplitude N subsequently integrated over the impact parameter b (in the analysis of Ref.
[37] the dependence on b was modeled):

σdipole(r, y) = 2

∫
d2 b N(r, y; b) .

In our approach, the amplitude Ñ is given by a sum of two terms

N = Ñ + ∆N

The first term Ñ follows from the solution of the BK equation whereas ∆N is a DGLAP correction to it
(Fig. 9). The strategy of the fit is the following. We trust the DGLAP evolution for x above x0 = 10−2.
The gluon density obtained as a result of this evolution is then used as a initial condition for the low
x evolution based on the BK equation. In practice the CTEQ6 gluon was used as an input. The large
distance behavior was extrapolated using the method proposed in Ref. [38]. The extrapolation is based
on the geometrical scaling [39], a phenomenon experimentally observed by HERA. The BK evolved
function N is fitted to the low Q2 data, with the effective proton size being the only fitting parameter
entering the b dependence ansatz. As the last step, the DGLAP correction ∆N is switched on and
computed by solving a DGLAP-type equation. An inhomogeneous N -dependent term in the equation
acts as a source term for ∆N . This allows to have zero initial condition for the DGLAP correction. 4

3.2 Results
We skip most of the technical details reported in Ref. [37] and present a result of the fit with χ2/d.o.f. '
1. Fig. 10 displays the results vs. a combined set of experimental data for x below 10−2. The solid line
is the final parameterization. The dashed line on plot (b) is the result without DGLAP corrections added.
Figure 11, a presents our results for the logarithmic derivative of F2 with respect to lnx. This graph
illustrates the hard-soft pomeron transition as a result of multiple rescattering of the BFKL pomeron.
The intercept decreases from the LO BFKL intercept of the order 0.3 to the hadronic value of the order
0.1. As clearly observed from Fig. 11a, the intercept depends strongly on the photon virtuality Q2 and
decreases towards hadronic value when the virtuality decreases. If we further increase the energy, the
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intercept would eventually vanish in accord with the unitarity requirements. The band of our estimates
for the value of saturation scale at LHC is displayed on Fig. 11b together with the most popular Golec-
Biernat Wüsthoff saturation model [40]. Based on our analysis we predict much stronger saturation
effects compared to the ones which could be anticipated from the GBW model. Though the power
growth of the saturation scale in both cases is given by the very same exponent of the order λ ' 0.3, we
had to take a much stronger saturation input at the beginning of the evolution.

4The initial condition for the BK equation is CTEQ gluon distribution. In the DGLAP-type equation for ∆N an initial
condition at r = r0 is required, which is set to zero and no modelling of the small x behavior is needed.
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Fig. 11: (a) The logarithmic derivative λ = ∂ lnF2/∂ ln 1/x plotted at low Q2 and very low x. (b) Saturation
scale. the hatched area defines a prediction band of Ref. [37]; dashed line is the GBW model.

Model predictions for FL at HERA and F2 at LHC can be found in Ref. [37]. Having determined
the dipole cross section we can relate it to the unintegrated gluon distribution f(k, y):

σdipole(r, y) =
4π2

Nc

∫
d k2

k4
[1 − J0(k r)] αs(k

2) f(k, y) . (4)

The relation (4) can be inverted for f which can be then used as an input for any computation based on the
kt factorization scheme. The data set for the dipole cross section σdipole as well as for the unintegrated
gluon f can be found in [24]. The uPDF is compared to other parameterizations in Fig.1.

3.3 Outlook
We have reported on, so far, the most advanced analysis of the F2 data based on combined BK/DGLAP
evolution equations. Though our approach incorporates most of the knowledge accumulated in saturation
physics, it is not yet fully developed. The next essential steps would be to include NLO corrections both
to BFKL and DGLAP. The quark sector should be also added into a unique scheme.

4 Generalized parton distributions5

The theoretical description of hard diffractive processes involves the gluon distribution in the proton.
Such processes have a proton in the final state which carries almost the same momentum as the incident
proton. Due to the small but finite momentum transfer, it is not the usual gluon distribution which
appears, but its generalization to nonforward kinematics. Prominent example processes are the exclusive
production of mesons from real or virtual photons (Figure 12a) when either the photon virtuality or the
meson mass provides a hard scale, virtual Compton scattering γ∗p→ γp, and the diffractive production
of a quark-antiquark pair (Figure 12b) in suitable kinematics. The generalized gluon distribution depends
on the longitudinal momentum fractions x and x′ of the emitted and reabsorbed gluon (which differ
because of the longitudinal momentum transfer to the proton) and on the invariant momentum transfer
t = −(p− p′)2. In its “unintegrated” form it depends in addition on the transverse momentum kt of the

5Authors: Markus Diehl and Thomas Teubner.
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Fig. 12: Example graphs for the diffractive production of (a) a vector meson V or (b) a quark-antiquark pair.
The large blob denotes the generalized gluon distribution of the proton and the small one the vector meson wave
function.
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Fig. 13: Graph for the exclusive diffractive production of a Higgs boson, p + p → p + H + p. The horizontal
blobs indicate generalized gluon distributions, and the vertical blob represents secondary interactions between the
projectiles.

emitted gluon. Another important process involving this distribution is exclusive diffractive production
of a Higgs in pp scattering (Figure 13), discussed in detail in [41]. Note that the description of this
process requires the gluon distribution to be unintegrated with respect to kt, whereas the processes in
γ(∗)p collisions mentioned above can be treated either in kt-factorization or in the collinear factorization
framework, where kt-integrated generalized parton distributions occur. Note also that Figures 12 and
13 show graphs for the process amplitudes: the cross section depends hence on the square of the gluon
distribution for Figure 12, and on its fourth power for Figure 13.

To extract the generalized gluon distribution from vector meson production data requires knowl-
edge of the meson wave function, which is an important source of uncertainty for the ρ0 and φ and, to a
lesser extent, for the J/Ψ. In this respect Υ production is by far the cleanest channel but experimentally
challenging because of its relatively low production rate. An approach due to Martin, Ryskin and Teub-
ner (MRT) [42] circumvents the use of the meson wave function by appealing to local parton-hadron
duality, where the meson production cross section is obtained from the one for open quark-antiquark
production, integrated over an interval of the invariant qq̄ mass around the meson mass. The choice of
that interval is then mainly reflected in an uncertainty in the overall normalization of the cross section.
Virtual Compton scattering γ∗p → γp does not involve any meson wave function and for sufficiently
large Q2 is again theoretically very clean.

By a series of steps one can relate the generalized gluon distribution to the usual gluon density,
obtained for instance in global parton distribution fits.

1. The t dependence is typically parameterized by multiplying the distribution at t = 0 with an expo-
nential exp(−b|t|), whose slope b has to be determined from measurement. In more refined models
this slope parameter may be taken to depend on the other kinematic variables of the process.
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Fig. 14: Data for the γ∗p → J/Ψ p cross section from H1 [47] and ZEUS [48, 49] compared to calculations in
the MRT approach [42, 46] with different gluon densities. The upper data points in the right panel correspond to
those in the left one. The ZEUS data has been shifted to theQ2 values of the H1 analysis using the Q2 dependence
measured by ZEUS, as described in [47]. Figure courtesy of Philipp Fleischmann (H1 Collaboration).

2. To leading logarithmic accuracy in log(1/x) one can neglect the difference between the longitu-
dinal momentum fractions of the two gluons. The amplitude for meson production is then pro-
portional to the usual gluon density evaluated at xg = (M2

V +Q2)/W 2, where MV is the meson
mass, Q2 the photon virtuality, and W the γ∗p c.m. energy. For phenomenology this leading loga-
rithmic approximation is however insufficient. A weaker approximation allows one to express the
amplitude in terms of the gluon density at xg times a correction factor for the kinematic asymmetry
(“skewing”) between the two momentum fractions [43].

3. The problem to relate the kt unintegrated gluon distribution to the kt integrated one is quite analo-
gous to the case of the usual forward gluon density (see Sect. 1.1), with some specifics concerning
Sudakov form factors in the nonforward case [44].

An overview and discussion of theoretical aspects and uncertainties in describing vector meson produc-
tion in this framework can be found in [45].

To illustrate the sensitivity of such processes to the gluon distribution we show in Figure 14 data
for photo- and electroproduction of J/Ψ compared to calculations in the MRT approach [46], with
different gluon densities taken as input to construct the generalized gluon distribution as just described.
The potential of such processes to constrain the gluon distribution is evident from this plot.

We finally note that the theoretical description of diffractive Higgs production in pp collisions is
very similar to the description of diffractive processes in ep scattering using kt factorization (much more
than to the description of, say, inclusive DIS in collinear factorization, which provides the main input
to the determination of conventional gluon densities at small x), see [41, 50] for further discussion. The
analysis of diffractive ep scattering is hence well suited to provide input to estimate the diffractive Higgs
cross section at the LHC.
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