Status of Existing Positron Sources Vinod Bharadwaj, SLAC April 2005

- Positron Sources
 SLC Positron Source
 - SLC target analysis

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury , April 10, 2005

THE INTERNATIONAL LINEAR COLLIDER (ILC)

WORL D Collaboration	Parameter	Reference	Ungrade	
 WORLD Collaboration Multi-billion dollar project Proposed e⁺e⁻ linear collider 0.5-1.0 TeV center-of-mass energies Major elements Electron injector Electron damping ring Main electron linac Electron beam delivery to IR Positron Source Positron linac Main positron linac Positron beam delivery to IR 	ParameterBeam Energy (GeV)RF gradient (MV/m)Two-Linac length (km)Bunches/pulseParticles/bunch (10 ¹⁰)Beam pulse length (μs)Pulse/s (Hz) $\sigma_x(IP)$ (nm) $\sigma_y(IP)$ (nm) $\sigma_z(IP)$ (mm) δ_E (%)Luminosity (10 ³³ cm ⁻² s ⁻¹)Average beam power (MW)Total number of klystronsTotal number of cavities	Reference 250 28 27.00 2820 2 950 5 543 5.7 0.3 3.0 25.6 22.6 603 18096	Upgrade 500 35 42.54 2820 2 950 5 489 4.0 0.3 5.9 38.1 45.2 1211 29064	
 IR Detectors at IR 	AC to beam efficiency (%)	18096 20.8	29064 17.5	

POSITRON PRODUCTION SCHEMES

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury , April 10, 2005

GENERIC POSITRON SOURCE

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury , April 10, 2005

4

POSITRON SOURCES

	Energy	Current	Rate	Target	Thickness	Power Dep	Matching	RF*	Yield
	(GeV)	(A)	(Hz)	Material	(r.l.)	(kW)		(MV/m)	(/e-/GeV)
ILC	6.00	2.E+10	5*2820	W-26Re	4.0	30.00		**	0.150
SLC	30.00	4.E+10	120	W-26Re	6.0	4.00	FC+TS+S	19	0.030
APS	0.20	1.0	30	W	2.0	0.48	S		0.006
CESR	0.15	1.7	60	W	2.0	0.30	λ/4 PS+S	10	0.013
BEPC	0.15	2.4	25	W	1.7		TS+S	10	0.025
SPRING-8	0.25	10.0	8	W-10Cu	2.0	1.00	PS+S	17	0.012
KEK	4.00	2x10nC	50	W	4.0	0.40	λ/4 PS+S	14	0.015
ORSAY	1.00	1.0	25	W-2Cu-2Ni	7.0	0.50	FC+S	10	0.021
SOLEIL	0.34	0.7	10	W	2.0	0.14	λ/4 PS+S	15	0.020
DESY	0.40	1.5	50	W	2.0	2.00	λ/4 PS+S	14	0.025
VEPP-5	0.30	1000.0	50	W	2.5	0.02	FC+S	18	0.050
LIL	0.20	1.4	100	W	2.0	0.60	λ/4 PS+S	9	0.030

The SLC positron source comes closest to the ILC needs and it is not that close! ILC source is ~ factor of 60 greater in flux and 8 in energy deposition into target. **ILC Pulse length is 1 ms as opposed to ~ 1 μs that is typical for existing sources

SLC POSITRON SOURCE OVERVIEW

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury , April 10, 2005

SLC POSITRON SOURCE – ELECTRON DRIVE BEAM

Energy	25-33 GeV
Intensity	1-5.0 10 ¹⁰ e-/pulse
Size	0.6 mm
Pulse energy	264 Joules/pulse
Pulse rate	1-120 Hz
Power	40W (1 Hz @ 1x10 ¹⁰)- 24kW (120Hz @ 5x10 ¹⁰)

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury , April 10, 2005

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury , April 10, 2005

SLC POSITRON SOURCE – CAPTURE SECTION

FLUX Conc.	6 Tesla, 20 cms
Tapered Solenoid	1 Tesla - 0.5 Tesla
DC Solenoid	0.5 Tesla
Capture RF	s-band , 19 MV/m
Final energy	200 MeV

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury , April 10, 2005

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury, April 10, 2005

SLC POSITRON TARGET

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury , April 10, 2005

SLC POSITRON TARGET SCHEMATIC

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury , April 10, 2005

BEAM STATISTICS FOR SLC TARGET

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury, April 10, 2005

Beam incident face

Beam exit face

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury , April 10, 2005

TARGET DETAIL – BEAM INCIDENT FACE

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury , April 10, 2005

TARGET DETAIL – BEAM EXIT FACE

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury , April 10, 2005

DETAIL OF SILVER CASING

Entrance High Magnification Photos

Dendritic and slag microstructure observed indicating incomplete fill during casting.

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury , April 10, 2005

Exit Side High Magnification Photos

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury, April 10, 2005

TARGET CUTS

Locations Where Cuts were Taken

Cut 1 and 2

Cut 2 and 3

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury , April 10, 2005

DETAIL OF CRACKING IN SILVER & TUNGSTEN

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury , April 10, 2005

20

TARGET HARDNESS vs POSITION ALONG BEAM

Hardness vs. Position on Cut 1

Hardness for SLAC target (Cut 1)

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury , April 10, 2005

TARGET HARDNESS vs. TRANSVERSE POSITION

Hardness vs. Position

(perpendicular to the beam)

Hardness variation toward Interface (Cut 1 and Cut 3)

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury , April 10, 2005

TEMPERATURE & SHOCK/STRESS ANALYSIS ANALYSIS DONE AT LLNL Thermal heat transfer analysis to determine temperature fluctuations in the target assembly Thermal shock stress analysis due to the rapid beam energy deposition in the W-Re and stress analysis after initial pressure waves dissipate Reminder Cooling tubes developed a leak Target developed cracks and loss of material on the beam exit face Thermal energy deposited increased from 4.4 kW to 5 kW towards the end of its life Beam parameters Beam spot is 0.8 mm with Gaussian profile Deposited beam energy various from a low near the front of the target to a maximum of 34 J/g at the back of the target Pulse rate 120 Hz, target moves 3 mm after each pulse. Same spot is hit every 0.5 seconds

THERMAL HEAT TRANSFER

Temperature history in SLC target (4.4 kW power)

- Peak temperatures reach 330 °C. Temperatures relax down to 120 °C over 0.5 seconds.
- Maximum coolant tube temperature is approximately 80 °C. This temperature is well below values leading to boiling crisis problems.

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury , April 10, 2005

SHOCK STRESS ANALYSIS HIGHLIGHTS

Thermal shock stress analysis for SLC target

- The rapid beam energy deposition results in a rapid rise in material temperature and a rapid material expansion. The resulting pressure waves travel out from beam spot region at sonic speeds
- Material near the beam exit side of the target experiences the highest pressures, the material initially reaches a high state of compression and then rebounds to a high tensile state
- Effective stress (von Mises) values reach a maximum value of ~5 x 10⁸ Pa (72 ksi)
- Effective stress after pressure wave dissipates
 - After a short tome (100 μs), a steady state temperature condition imposes a steady stress state in the target, with a peak effective stress of 2.7 x 10⁸ Pa (39 ksi)
 - This stress state would also occur if the beam energy was deposited over a time period of many microseconds

Workshop on Positron Sources for the International Linear Collider Status of Existing Positron Sources – Daresbury , April 10, 2005

SUMMARY

- ~ 10 accelerator positron sources worldwide
 - Only the "conventional" production scheme is used
- SLC is the closest in performance to what is needed by the ILC
 - Still a factor of 60 fewer positrons/sec
 - Factor of six less power deposited on target
- Target is the hardest part of the positron source
 - Beam energy deposition
 - Associated cooling systems
 - Shock & stress effects have to be taken care of moving target
 - Target damage (DPAs) need to taken into account
 - Target will be run close to the edge
- Capture system (magnet & RF) need care