Acceptance Problems of Positron Capture Optics

Klaus Floettmann

DESY

Daresbury, April '05

Basics

 Capture efficiencies for conventional source and undulator source

The capture optics

What is the Effect of a Solenoid Field on the Target location?

When a beam is created inside a solenoid field it retains an angular momentum when exiting the solenoid:

Vortex motion of an electron beam with angular momentum

$$\varepsilon_{mag} = \frac{e \cdot B_z}{8 \cdot m_0 c} \cdot R^2$$

 B_z = solenoid field at the cathode position

R = cathode radius

The angular momentum acts as an emittance contribution, thus diluting the beam quality.

What is the Effect of a Solenoid Field on the Target location?

In case of the positron capture section the beam quality does not chance significantly when comparing a case with and without solenoid field on the target!

What is the Effect of a Solenoid Field on the Target location?

Initial phase space

Solenoids & Apertures

- I Start inside the solenoid field and track through the structure
- II Some fraction survives, i.e. a part of the initial phase space can be mapped into the final phase space without losses
- III Track back through the entrance field of the solenoid

when starting inside/outside the solenoid the beam looks the same at the exit.

How to calculate the Acceptance of the Capture Optics?

Try to calculate the maximum phase space volume which can be transmitted:

$$V = \pi^2 \frac{2}{3} \left(\frac{eB_z}{2m_0 c\gamma} R^2 \right)^2$$

R. Helm, 1962,4D Volume, canonical momenta

$$\gamma A = \frac{eB_z}{2 \cdot m_0 c} R^2$$

SLAC, Projection

$$\gamma A = \frac{eB_z}{m_0 c} R^2$$

DESY, Projection

Scaling with $B_z R^2$

How to calculate the Acceptance of the Capture **Optics**?

Since the beam has to be matched into the Damping Ring, we have to relate the individual particle coordinates to the rms parameters of the beam:

Calculate 'single particle emittance': Π

With
$$\beta_x = \sqrt{\frac{x_{rms}^2}{\varepsilon_{rms}}} = \frac{x_{rms}}{p_{x,rms}^{uncor}}$$

'Single Particle Emittance'

The rms ellipse of the beam is transformed into a circle.

The square of the radius of a coaxial circle through the particle coordinates is the single particle emittance.

Example: Single Particle Emittance Plot

amd_pps.1800.008 10.04 14:19

Capture Efficiency Calculations

Input:

- > Photons from a helical undulator $E_1 = 20$ MeV onto a 0.4 X_0 Ti target, $\sigma = 0.7$ mm
- \triangleright 6.2 GeV electrons onto a 4.5 X₀ W target, σ = 3 mm

Capture Optics

- > AMD starting at 6 T, end field Bz varied
- \blacktriangleright taper parameter g = 30 m⁻¹ for undulator source, g = 60 m⁻¹ for conv. Source
- ➢ CDS acceleration section as in TDR up to ~120 MeV
- cavities start 0.2 m behind the target in all cases
- \blacktriangleright aperture radius = 23 mm
- ideal fields, no misalignments
- tracking program ASTRA

Transverse Acceptance Cut

Dynamic Aperture of a Damping Ring (TDR)

Transverse Phase Space after Cuts

z = 13.00 m

 $\gamma \epsilon_{rms} = 0.004$, no particles outside a 3 sigma ellipse

'gaussian' distribution in x and px

amd_pps.0013.001 10.04 08:94

Undulator Source, Bz = 0.24 T

Undulator Source, Bz = 0.16 T

Conventional Source, Bz = 0.5 T

Conventional Source, Bz = 0.24 T

Conventional Source, Bz = 0.16 T

Conventional & Undulator Source Bz = 0.24 T

