Polarized e^- and e^+ at the ILC

Gudrid Moortgat-Pick (CERN)

Top+Higgs WG Snowmass, 22/08/2005

1. Introduction

- → general remarks
- \rightarrow polarization report
- 2. The physics case for polarized e^- and e^+ beams top
 - \rightarrow determination of the electroweak properties at threshold and cont.
 - \rightarrow Limits for CP-violating couplings
 - \rightarrow Limits for flavour changing couplings
 - \rightarrow Impact of transversely polarized beams in $t\overline{t}$

3. Higgs

- → SM-Higgs production and determination of general Higgs couplings
- \rightarrow heavy Higgs production in the MSSM
- \rightarrow SUSY constraints from GigaZ
- 4. Concluding remarks

Physics at the e^+e^- Linear Collider

- * Discovery of New Physics (NP)
 - \rightarrow Large potential for direct searches
 - \rightarrow Impressive potential also for indirect searches!
- * Unraveling the structure of NP
 - \rightarrow precise determination of underlying dynamics and parameters
 - \rightarrow model distinction through model-independent searches
- * High precision measurements
 - \rightarrow tests of the SM with unprecedented precision
 - \rightarrow even smallest hints of NP could be observed
- ⇒ Beam polarization = decisive tool for direct and indirect searches!

'State of the art': Polarized e^- beam at SLAC: SLC $\sim 75\%$ E158 $\sim 90\%$ at Nagoya, KEK: $\sim 90\%$

new results show that $P(e^-) \sim 90\%$ can be expected at ILC!

 \Rightarrow won't such high $P(e^{-})$ suffice?

Polarization report - 'The role of polarized poitrons and electrons in revealing fundamental interactions at the Linear Collider' (working group POWER = POlarization at Work in Energetic Reactions)

- The 'physics case' for having both beams polarized: 150 pages, \sim 80 authors, \sim 35 institutes
- \rightarrow incl. 90 pages physics, 20 pages machine, 20 pages polarimetry
- \rightarrow hep-ph/0507011, will be submitted to Phyics Reports
- → http://www.ippp.dur.ac.uk/~gudrid/power/
- → executive summary, 12 pages, same webpage
- News from physics with polarized beams in Susy, SM, other NP!
- ightarrow focus on use of P_{e^+} compared to P_{e^-} only
- Machine overview about polarized e^+ source and polarization measurements

General remarks about the coupling structure

Def.: left-handed $\equiv P(e^{\pm}) < 0$ right-handed $\equiv P(e^{\pm}) > 0$ Which configurations are possible in principle? s-channel:

 e^+ J=1 \leftarrow contributions only from RL,LR: SM and NP (γ , Z) J=0 \leftarrow contributions only from LL,RR: NP!

 \Rightarrow In principle: $P(e^{-})$ fixes also helicity of e^{+} !

Which configurations are possible in the crossed channels?

Gudi Moortgat-Pick

Some well-known statistical examples

At the very end: gain in $P_{\rm eff}$, A_{LR} and background suppression

\Rightarrow Both e^- and e^+ beams should be polarized!

Determination of the electroweak top properties

Process: $e^+e^- \rightarrow t\bar{t}$ (test of coupling $t \rightarrow \gamma$, Z)

$\Gamma^{\mu}_{t\bar{t}\gamma,Z} = ie\{\gamma^{\mu}[F^{\gamma,Z}_{1V} + F^{\gamma,Z}_{1A}\gamma^5]$	Form factor	SM value	$\sqrt{s} = 500 \mathrm{GeV}$		$\sqrt{s} = 800 \mathrm{GeV}$	
$+rac{(p_t-p_{ar{t}})^{\mu}}{2m_t}[F_{2V}^{\gamma,Z}+F_{2A}^{\gamma,Z}\gamma^5]\}$			p = 0	p = -0.8	p = 0	p = -0.8
• Studies at threshold:	F_{1V}^Z	1		0.019		
$v_{L} = (1 - \frac{8}{5} \sin^{2} \theta_{W})$ via A_{LD}	F_{1A}^Z	1		0.016		
$v_t = (1 3 0_W) V_{LR}$	$F_{2V}^{\gamma,Z} = (g-2)^{\gamma,Z}{}_t$	0	0.015	0.011	0.011	0.008
$\Rightarrow \Delta A_{LR}/A_{LR} \sim \Delta P_{eff}/P_{eff}$	$\operatorname{Re} F_{2A}^{\gamma}$	0	0.035	0.007	0.015	0.004
⇒ (80%,0)→(80%,60%): factor 3!	$\operatorname{Re} d_t^\gamma ~[10^{-19} \ \mathrm{e} \ \mathrm{cm}]$	0	20	4	8	2
Studies at $\sum 500$ Call	$\operatorname{Re} F_{2A}^Z$	0	0.012	0.008	0.008	0.007
• Studies at $\sqrt{s} = 500$ GeV:	$\operatorname{Re} d_t^Z [10^{-19} \text{ e cm}]$	0	7	5	5	4
only for P_{e^-} so far!!!	$\operatorname{Im} F_{2A}^{\gamma}$	0	0.010	0.008	0.006	0.005
estimated:	${\rm I}m F^Z_{2A}$	0	0.055	0.010	0.037	0.007
\Rightarrow (80%,0) \rightarrow (80%,60%): \sim factor 3	F^W_{1R}	0	0.030	0.012		
	$1mF_{2R}^W$	0	0.025	0.010		

\Rightarrow True simulation still needed!

Limits for CP-violating top dipole couplings

Process: $e^+e^- \rightarrow t\bar{t}$, $t \rightarrow \ell^+\nu_\ell b$

Test of anomalous $t\bar{t}\gamma$, $t\bar{t}Z$ couplings via ℓ energy and angular distributions:

useful observable: forward-backward asymmetry

$$\mathcal{A}_{\mathsf{CP}}^{f}(P_{e^{-}}, P_{e^{+}}) = \frac{\int_{\theta_{0}}^{\pi/2} d\cos\theta_{f} \frac{d\sigma^{-}}{d\cos\theta_{f}} - \int_{\pi/2}^{\pi-\theta_{0}} d\cos\theta_{f} \frac{d\sigma^{+}}{d\cos\theta}}{\int_{\theta_{0}}^{\pi/2} d\cos\theta_{f} \frac{d\sigma^{-}}{d\cos\theta_{f}} + \int_{\pi/2}^{\pi-\theta_{0}} d\cos\theta_{f} \frac{d\sigma^{+}}{d\cos\theta}}$$

 $A_{CP}^{f} \sim$ CP-violating coupling

(however, if $P_{e^-} \neq P_{e^+}$: no initial CP-eigenstate)

- study: $\sqrt{s} = 500$ GeV, $\mathcal{L} = 500$ fb⁻¹, eff= 60% for *b*, ℓ , CP-coupling~ 10^{-2}
- \Rightarrow measurable at 5.1- σ (b), 2.4- σ (ℓ); with (80%, 80%): 16- σ (b), 3.5- σ (ℓ)!
- Further (azimuthal) asymmetries (t reconstruction): gain only $\sim 30\%$

\Rightarrow same polarization of both beams: gain factor \sim 3

Limits for flavour-changing neutral top-couplings Processes: top pair production or singe top production

- Single top:
 - \rightarrow more sensitive
- top pairs+decays:
 - \rightarrow better for disentangling
- Results:

vector couplings:

$$(80\%,0)
ightarrow (80\%,45\%)$$
: ~ 1 .
tensor couplings:

(80%,0)→(80%,45%): ~ 1.

⇒ With (80%,45%) ILC₅₀₀ extends LHC (w.r.t. γ_{μ}) ⇒ Comparison with simulations of LHC needs to be updated!

Beam polarization for SM Higgs searches

Light Higgs, $m_H = 130$ GeV:

 \rightarrow HZ and $H\nu\bar{\nu}$ similar rates

P_{e^-} , P_{e^+} needed for:

- a) separation
- b) background supp.

 $\Rightarrow \sigma(HZ)/\sigma(H\nu\nu):$

improves by factor 4

(+80%,0)→ (+80%, -60%)

Configuration	Scaling factors				
(P_{e^-}, P_{e^+})	$e^+e^- \rightarrow H \nu \bar{\nu}$	$e^+e^- \rightarrow HZ$			
(+80%, 0)	0.20	0.87			
(-80%, 0)	1.80	1.13			
(+80%, -60%)	0.08	1.26			
(-80%, +60%)	2.88	1.70			

 $\Rightarrow P_{e^-}$ and P_{e^+} very helpful for a light SM Higgs!

Determination of general Higgs couplings

Process: $e^+e^- \rightarrow HZ \rightarrow Hf\bar{f}$

general effective HZV vertex can be parametrized:

 $\mathcal{L} = (1 + a_Z) \frac{g_Z m_Z}{2} H Z_\mu Z^\mu + \frac{g_Z}{m_Z} [b_V H Z_{\mu\nu} V^{\mu\nu} + c_V (\partial_\mu H Z_\nu - \partial_\nu H Z_\mu) V^{\mu\nu} + \tilde{b}_V H Z_{\mu\nu} \tilde{V}^{\mu\nu}]$

\rightarrow 5 CP-even. 2 CP-odd		$\epsilon_{\tau} = 0 = \epsilon_b$		$\epsilon_{\tau} = 50\%, \epsilon_{b} = 60\%$	
	(P_{e^-}, P_{e^+})	(0, 0)	(80%, 0)	(80%, 60%)	(80%, 60%)
	$\operatorname{Re}(b_Z)$	5.5	2.8	2.3	2.2
Results of the study	$\operatorname{Re}(c_Z)$	6.5	1.4	1.1	1.1
	$\operatorname{Re}(b_{\gamma})$	123.2	5.2	3.6	3.4
at $\sqrt{s} = 500$ GeV and	$\operatorname{Re}(c_{\gamma})$	54.2	1.1	0.8	0.7
with $\mathcal{L} = 300$ fb ⁻¹ :	$\operatorname{Re}(\tilde{b}_Z)$	10.4	9.5	7.8	5.2
	$\operatorname{Re}(\tilde{b}_{\gamma})$	61.8	14.5	10.1	6.3
(using opt. observables)	$\operatorname{Im}(b_Z - c_Z)$	105.5	7.0	4.9	4.6
\Rightarrow sensitivity improved	$\operatorname{Im}(b_{\gamma} - c_{\gamma})$	20.6	7.0	5.7	5.4
	$\operatorname{Im}(\tilde{b}_Z)$	52.1	3.2	2.2	2.2
by 30% and	$\operatorname{Im}(\tilde{b}_{\gamma})$	10.1	3.2	2.6	2.6

limits up to 10^{-4} reachable

with $(80\%, 0) \rightarrow (80\%, 60\%)$

 $\Rightarrow P_{e^-}$ and P_{e^+} very helpful for determining the general couplings

SUSY Higgs production

Heavy Higgs production in decoupling regime:

• Process: single Higgs in $e^+e^- \rightarrow \nu \bar{\nu} H$ for $m_A \gg m_Z$ (rare process, since coupling (H,gauge bosons) suppressed!)

 \Rightarrow Both e^- and e^+ beams should be polarized for such rare processes!

Last-but-not-least: SM physics tests at GigaZ

Measurement of $\sin^2 \theta_{\rm eff}^\ell$ in $e^+e^- \to Z \to f\bar{f}$:

 \Rightarrow Both e^- and e^+ beams polarized needed to reach desired precision!

Impact of GigaZ for SUSY searches

Gain of about one order of magnitude in $\Delta \sin^2 \theta_{eff}$:

 \Rightarrow Prediction/constaints for m_h and $m_{1/2}$

• 'gain': bounds on SM $m_H \sim$ order of magnitude, on $m_{1/2} \sim$ factor 5!

\Rightarrow Both e^- and e^+ beams polarized to exploit GigaZ constraints!

Gudi Moortgat-Pick

Searches for scalar leptoquarks in $t\overline{t}$ production Process: $e^+e^- \rightarrow t\overline{t}$ SM+SU(2)_L doublet of scalar LQ

If P_{e^-} and P_{e^+} : effects of transversely-polarized beams (limes $m_e \rightarrow 0$)

- unique tool for chirality-violating couplings interferences with SM cause:
 - $\rightarrow \sin\theta\cos\phi$, $\sin\theta\sin\phi$
- with long./unp. beams: no interferences
- Azimuthal asymmetries as: $A_{1}(\theta_{0}) = \frac{1}{r\sigma(\theta_{0})} \int_{-\cos\theta_{0}}^{\cos\theta_{0}} d\cos\theta \left[\int_{0}^{\pi} d\phi - \int_{\pi}^{2\pi} d\phi \right] \frac{d\sigma}{d\Omega} \xrightarrow[0.015]{0.015}$ (cut-off in forward, backward direction)

g_{lim}

• Limits on $Re(g_Rg_L)$ four times better than those from e^- dipole limits

 \Rightarrow If P_{e^-} , P_{e^+} : exploitation of tranversely-polarized beams possible

Gudi Moortgat-Pick

Possible interactions: pol-dependences in general

Which effects are possible? $|M|^2 \sim \bar{v}(\lambda_{e^+})\Gamma u(\lambda_{e^-})\bar{u}(\lambda_{e^-}')\Gamma^{\dagger}v(\lambda_{e^+}')$

Intera	action structure	Longitudinal		Transverse		P, S = (pseudo)scalar
Г	L_t	Bilinear	Linear	Bilinear	Linear	A.V = (axial) vector
S	S	$\sim P_{e^-}P_{e^+}$	—	$\sim P_{e^-}^T P_{e^+}^T$	—	
Р	S	_	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$	—	T=tensor
V,A	S	—	—	_	$\sim P_{e^{\pm}}^{T}$	
Т	S	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$		
Р	Р	$\sim P_{e^-}P_{e^+}$	—	$\sim P_{e^-}^T P_{e^+}^T$	—	
V,A	Р	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$	$\sim P_{e^{\pm}}^{T}$	
Т	Р	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$		
V,A	V,A	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$	_	
T	V,A	-	—	_	$\sim P_{e^{\pm}}^{T}$	
Т	Т	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$	_	

impact of beam polarization depends on kind of interaction(s)

• with P_{e^-} and P_{e^+} much higher 'flexibility' with regard to NP candidates for direct as well as indirect searches!

The physics case for polarized e^- and e^+

- Results of the report:
 - * many $\equiv (n+1)$ examples from different physics scenarios!
 - ⇒ Report should be seen as contemporary status report! still studies ongoing, new ideas+examples coming up
- Still missing: e.g. true simulation of elecroweak top properties! Maybe exploitation of beam polarization for CP-higgs?
- $P_{e^+} \Rightarrow$ only gains, independent in which direction NP points * key additional observables for unraveling the underlying physics: kind of interaction, particle properties, parameter determination,...
 - * significant improvement for model-independent approaches in direct as well as indirect searches for NP
 - \star Analyzing NP might be challenging \rightarrow best of all tools needed!
- P_{e^+} crucial preparation for 'being prepared for the Unexpected'!
- \Rightarrow full potential of the ILC could only be realized with P_{e^-} and $P_{e^+}!$ expected: $P_{e^-} = \pm 90\%$, $P_{e^+} = \pm 60\%$ and $\Delta P_{\pm}/P_{\pm} = 0.25\%$