Polarized e^- and e^+ at the ILC

Gudrid Moortgat-Pick (CERN)

SUSY WG

Snowmass, 22/08/2005

1. Introduction

- → general remarks
- → polarization report
- 2. The physics case for polarized e^- and e^+ beams here: SUSY
 - ightarrow sfermions $ilde{e}_{L,R}$, $ilde{\mu}_{L,R}$, $ilde{t}_1$
 - ightarrow gauginos $\tilde{\chi}_i^0$ CP-phases: use of transversely polarized beams
 - → R-parity violating SUSY
 - → Higgs
 - → SUSY constraints from GigaZ
- 3. Few examples from 'beyond SM'
- 4. Concluding remarks

Physics at the e^+e^- Linear Collider

- * Discovery of New Physics (NP)
 - → Large potential for direct searches
 - → Impressive potential also for indirect searches!
- * Unraveling the structure of NP
 - → precise determination of underlying dynamics and parameters
 - → model distinction through model-independent searches
- * High precision measurements
 - → tests of the SM with unprecedented precision
 - → even smallest hints of NP could be observed
- ⇒ Beam polarization = decisive tool for direct and indirect searches!

'State of the art':

Polarized e^- beam at SLAC: SLC $\sim 75\%$

E158 $\sim 90\%$

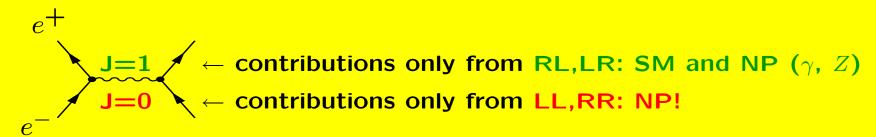
at Nagoya, KEK: $\sim 90\%$

new results show that $P(e^-) \sim 90\%$ can be expected at ILC!

 \Rightarrow won't such high $P(e^{-})$ suffice?

Polarization report - 'The role of polarized poitrons and electrons in revealing fundamental interactions at the Linear Collider' (working group POWER = POlarization at Work in Energetic Reactions)

- The 'physics case' for having both beams polarized: 150 pages, \sim 80 authors, \sim 35 institutes
- → incl. 90 pages physics, 20 pages machine, 20 pages polarimetry
- → hep-ph/0507011, will be submitted to Phyics Reports
- → http://www.ippp.dur.ac.uk/~gudrid/power/
- → executive summary, 12 pages, same webpage
- News from physics with polarized beams in Susy, SM, other NP!
- ightarrow focus on use of P_{e^+} compared to P_{e^-} only
- ullet Machine overview about polarized e^+ source and polarization measurements


General remarks about the coupling structure

Def.: left-handed $\equiv P(e^{\pm}) < 0$

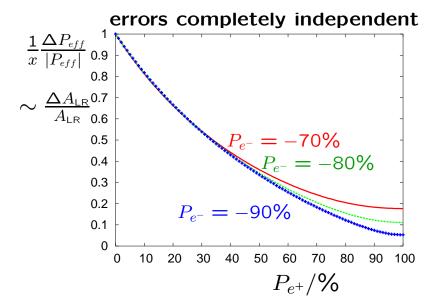
right-handed $\equiv P(e^{\pm}) > 0$

Which configurations are possible in principle?

s-channel:

 \Rightarrow In principle: $P(e^{-})$ fixes also helicity of e^{+} !

Which configurations are possible in the crossed channels?


t-channel: e^{+} e^{+} $\Rightarrow \text{ helicity of } e^{-} \text{ not coupled}$ $with \text{ helicity of } e^{+}!$ $depends \text{ on } P(e^{-})!$

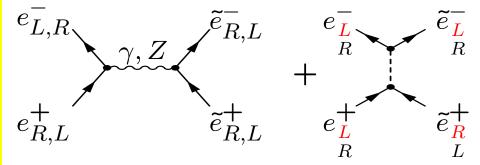
Some well-known statistical examples

At the very end: gain in $P_{ m eff}$, A_{LR} and background suppression

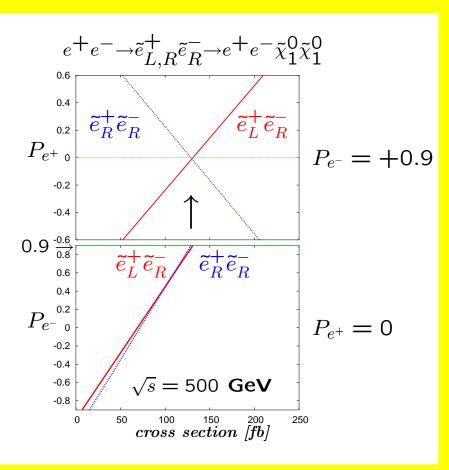
ullet Enhancement of effective polarization and measuement of A_{LR}

 $P_{eff}/\%$ $P_{e^-} = -90\%$ $P_{e^-} = -80\%$ $P_{e^-} = -70\%$ $P_{e^-} = -70\%$ $P_{e^-} = -70\%$ $P_{e^+}/\%$

• Background suppression:


Gain with P_{e^+}	P_{e^+} in addition to P_{e^-}			
Signal 'S'	×2	×2		
Background 'B'	$\times 0.5$	×2		
S/B	\times 4	Unchanged		
S/\sqrt{B}	$\times 2\sqrt{2}$	$\times \sqrt{2}$		

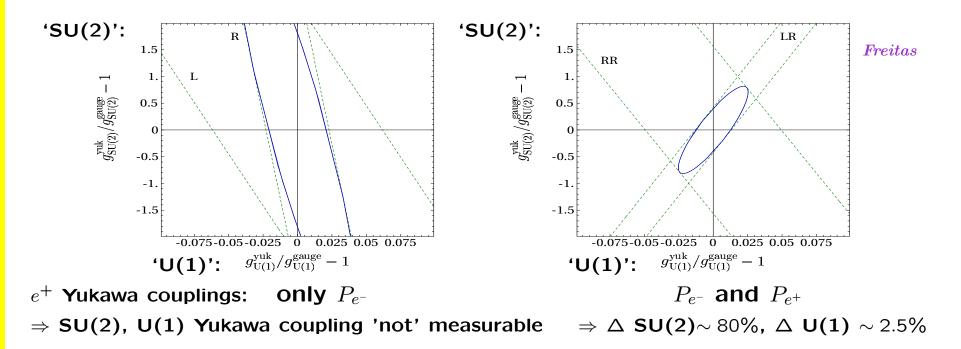
Selectron sector


Test of Susy quantum numbers:

Association of chiral electrons to scalar

partners
$$e_{L,R}^- \leftrightarrow ilde{e}_{L,R}^-$$
 and $e_{L,R}^+ \leftrightarrow ilde{e}_{R,L}^+$

- 1. separation of scattering versus annihilation channel
- 2. test of 'chirality': only $\tilde{e}_R^- \tilde{e}_L^+$ may survive at $P_{e^-} > 0$ and $P_{e^+} > 0$!


 \Rightarrow Even high P_{e^-} not sufficient, but P_{e^+} needed!

Selectron sector

Supersymmetry: Test of Yukawa couplings

Test of SU(2), U(1) gauge couplings \equiv SUSY Yukawa couplings

- 1. separation of the pairs $\tilde{e}_R^- \tilde{e}_R^+$ and $\tilde{e}_R^- \tilde{e}_L^+$
- 2. 'variation' of Yukawa couplings accepted within experimental uncertainty

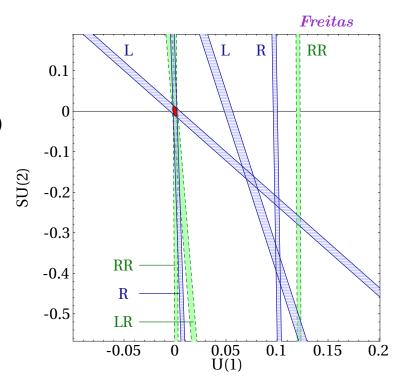
 \Rightarrow Even high P_{e^-} not sufficient but P_{e^+} needed!

Selectron sector

Supersymmetry: Test of Yukawa couplings

Determination of U(1), SU(2) Yukawa couplings of e^+ :

further scenario with $m_{\tilde{e}_R} \ll m_{\tilde{e}_L}$, however no GUT relation between M_1 and M_2 :


with
$$P_{e^-} = +90\%$$
 (R) and $P_{e^-} = -90\%$ (L)

⇒ four-fold ambiguity!

Adding:
$$(P_{e^-}, P_{e^+}) = (-60\%, +90\%)$$
 (LR) and $(P_{e^-}, P_{e^+}) = (+60\%, +90\%)$ (RR)

⇒ unique determination with

$$\Delta(U(1)) \sim 0.2\%$$
 and $\Delta(SU(2)) \sim 1.2\%$

 \Rightarrow Even high P_{e^-} not sufficient but P_{e^+} needed!

Smuon mass measurement

SUSY mass measurement in the continuum

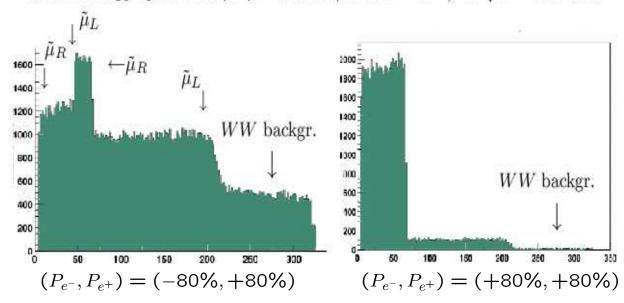
• To optimize threshold scans → continuum measurements important!

Example: $e^+e^- \rightarrow \tilde{\mu}_{L,R}^+\tilde{\mu}_{L,R}^-$

→ only s-channel

Strong WW-background

ightarrow all edges observable only with P_{e^-} and P_{e^+}


 ${\sim}65$ GeV and 220 GeV

$$\rightarrow$$
 S/B=0.07 (+80%,0)

$$\rightarrow$$
 S/B=0.46 (+80%, -80%)

$$\Rightarrow \Delta(m_{\tilde{\mu}_{L,R}}) \sim \text{few GeV}$$

Muon energy spectrum: $\mu^+\mu^-$ events (incl. W^+W^-) at $\sqrt{s} = 750$ GeV

 \Rightarrow Even high P_{e^-} not sufficient but P_{e^+} needed!

Third family: stop sector

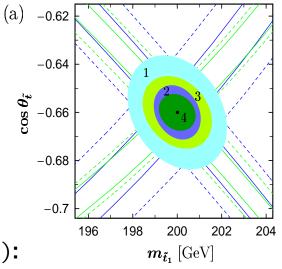
Determination of stop mixing angle

Process $e^+e^- \to \tilde{t}_1\tilde{t}_1$ (only γ , Z exchange): determination of $\theta_{\tilde{t}}$

light colours '1', '3':

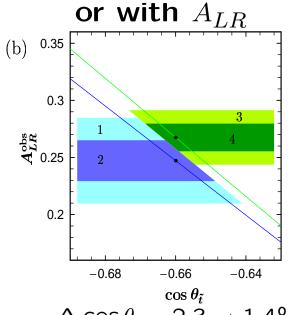
$$ightarrow \mathcal{L}_{int} = 100 \ extbf{fb}^{-1}$$

dark colours '2', '4':


$$\rightarrow \mathcal{L}_{int} = 500 \text{ fb}^{-1}$$

 $(\pm 90\%, 0) \rightarrow (\pm 90\%, \mp 60\%)$:

with
$$\mathcal{L}_{\text{int}} = 100 \text{ fb}^{-1}$$


with
$$\mathcal{L}_{int} = 500 \text{ fb}^{-1}$$

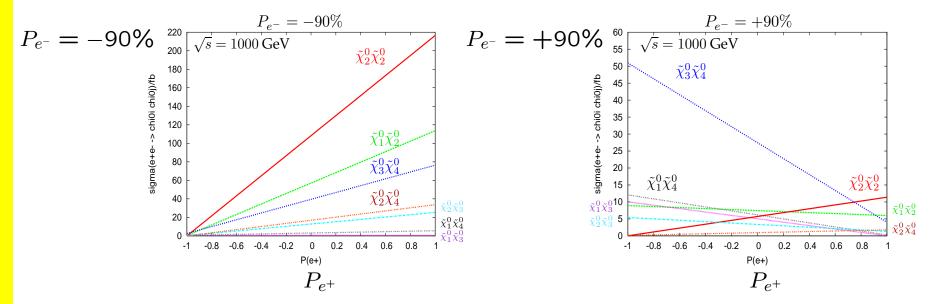
with $\sigma(ilde{t}_1 ilde{t}_1)$

 $\Delta \cos \theta_{\tilde{t}} \sim 3.6 \rightarrow 2.4\%$

$$\Delta \cos heta_{ ilde{t}} \sim 1.8
ightarrow 1.1\%$$

 $\Delta \cos \theta_{\tilde{t}} \sim 2.3 \rightarrow 1.4\%$

 $\Delta \cos \theta_{\tilde{t}} \sim 1.1 \rightarrow 0.7\%$

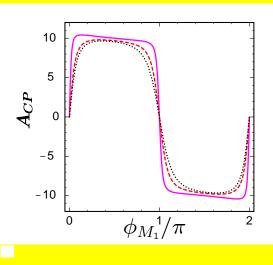

 \Rightarrow 'gain' factor about 1.6 for accuracy in $\cos\theta_{\tilde{t}}$ and about 1.4 for $\Delta m_{\tilde{t}}$

Gaugino/higgsino sector

SUSY: determination of the new parameters (already 105 new parameters in the 'minimal' model (MSSM)!)

- complicated interplay of SUSY parameters
 - ⇒ as many as possible observables needed!

exploit e.g. all possible cross sections of $\tilde{\chi}_i^0 \tilde{\chi}_j^0$: $\sigma(e^+e^- \to \tilde{\chi}_i^0 \tilde{\chi}_j^0)$ /fb

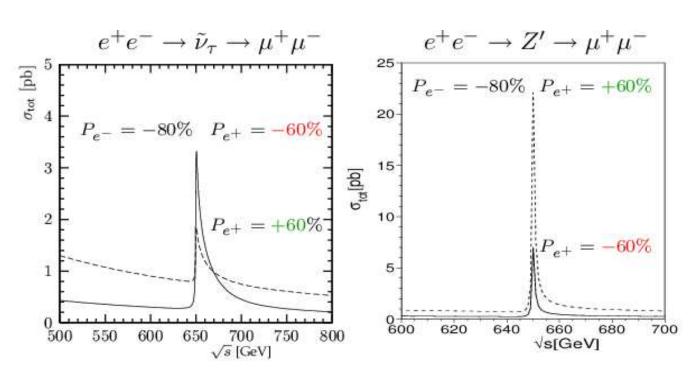

ullet with P_{e^+} gain in cross sections up to factor $\sim\!2$ wrt P_{e^-} only

Azimuthal asymmetries with trans. polarization CP-odd observables in neutralino production

- Cross sections: $\sigma^T \sim P_{e^-}^T P_{e^+}^T \int d\phi Re f_1 \cos(\eta 2\phi) + Im f_2 \sin(\eta 2\phi)$ (η gives azimuthal orientation of transverse beams w.r.t. to fixed reference frame)
- \Rightarrow both beams have to polarized, otherwise no contribution $(m_e \rightarrow 0!)$
- CP-odd terms are $\sim \sin(\eta 2\phi)$
 - \rightarrow Dirac case: in $\tilde{\chi}_i^+ \tilde{\chi}_j^-$ production CP-odd terms $\sim \sin(\eta 2\phi)$ vanish!
 - Bartl ea '04
 - ightarrow Majorana case: in $ilde{\chi}_i^0 ilde{\chi}_j^0$ production CP-odd terms $\sim \sin(\eta-2\phi)$ contribute!

(because of t, u channel)

$$e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_2$$
:
at $\sqrt{s}=500$ GeV
for $\tan\beta=3,10,30$

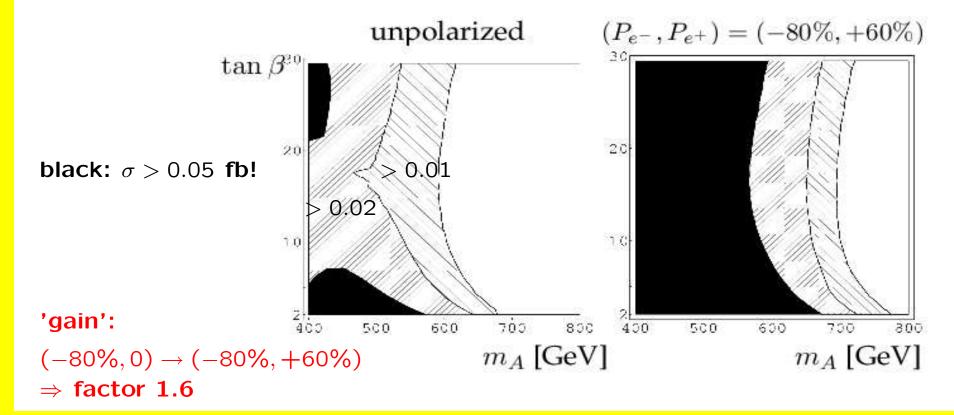


 \Rightarrow Rather large A_{CP} expected, even for small CP-phases!

Extended SUSY model: R-parity violation

R-parity violation: single $\tilde{\nu}$ production in s-channel

- Process $e^+e^- o \tilde{\nu}_{\tau} o \mu^+\mu^-$ (only s-channel γ , Z, $\tilde{\nu}_{\tau}$ exchange)
 - \Rightarrow 'spin $0-\tilde{\nu}' \rightarrow$ favours LL configuration, but e.g. Z' in SSM favours LR!



direct test of spin in resonance production

SUSY Higgs production

Heavy Higgs production in decoupling regime:

• Process: single Higgs in $e^+e^- \rightarrow \nu \bar{\nu} H$ for $m_A \gg m_Z$ (rare process, since coupling (H,gauge bosons) suppressed!)

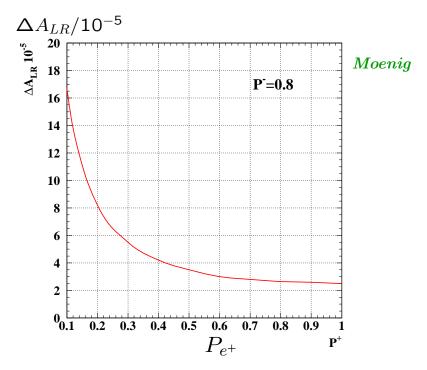
 \Rightarrow Both e^- and e^+ beams should be polarized for such rare processes!

Last-but-not-least: SM physics tests at GigaZ

Measurement of $\sin^2\theta_{\rm eff}^\ell$ in $e^+e^- \to Z \to f\bar f$:

• 'usually' $\Delta P/P \sim 0.5\%$ sufficient (maybe $\Delta P/P \sim 0.25\%$ reachable!)

$$A_{LR} = \frac{2(1 - 4\sin^2\Theta_{eff}^{\ell})}{1 + (1 - 4\sin^2\Theta_{eff}^{\ell})^2}$$


$$Blondel \sqrt{\frac{(\sigma^{RR} + \sigma^{RL} - \sigma^{LR} - \sigma^{LL})(-\sigma^{RR} + \sigma^{RL} - \sigma^{LR} + \sigma^{LL})}{(\sigma^{RR} + \sigma^{RL} + \sigma^{LR} + \sigma^{LL})(-\sigma^{RR} + \sigma^{RL} + \sigma^{LR} - \sigma^{LL})}}$$

• with $\Delta P/P = 0.5\%$ and $P_{e^-} = 80\%$ only:

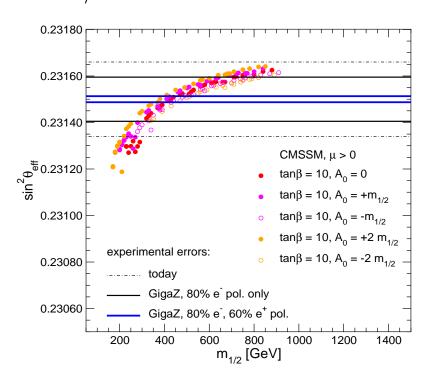
$$\Rightarrow \Delta \sin^2 heta_{
m eff}^\ell = 9.5 imes 10^{-5}$$

(• with $\Delta P/P = 0.25\%$ and $P_{e^-} = 90\%$:

$$\Rightarrow \Delta \sin^2 heta_{
m eff}^\ell = 5 imes 10^{-5}$$
 Rowson)

• with Blondel scheme: $(P_{e^-}, P_{e^+}) = (80\%, 60\%)$:

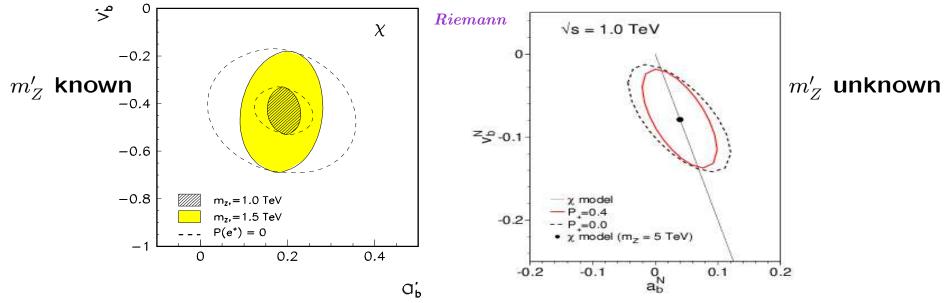

$$\Rightarrow \Delta \sin^2 heta_{ ext{eff}}^\ell = 1.3 imes 10^{-5}$$
 Moenig


 \Rightarrow Both e^- and e^+ beams polarized needed to reach desired precision!

Impact of GigaZ for SUSY searches

Gain of about one order of magnitude in $\Delta \sin^2 \theta_{eff}$:

\Rightarrow Prediction/constaints for m_h and $m_{1/2}$

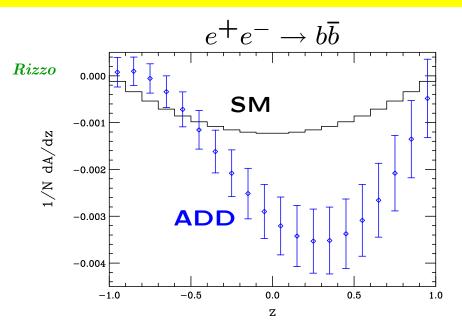

ullet 'gain': bounds on SM $m_H \sim$ order of magnitude, on $m_{1/2} \sim$ factor 5!

 \Rightarrow Both e^- and e^+ beams polarized to exploit GigaZ constraints!

Some more 'non-SUSY' examples: indirect searches

Who guarantees that we will ever reach the new heavy scale? ...

- ⇒ indirect searches important!
- e.g. in $e^+e^- \to f\bar{f}$ searches for Z', extra dimensions, etc.


- → determination of couplings and mass reconstruction
- ightarrow gain factor with $P_{e^+} \sim 1.6$ cf. P_{e^-} only (reduction of systematic error!)
- \bullet e.g. P_{e+} decisive for model-independent bounds in CI Babich

Further gain for indirect searches

With transversely polarized beams:

→ exploit azimuthal asymmetries also for indirect searches!

 distinction between SM and different models of large extra dimensions!

- \bullet access to new CP-violating kind of interactions in $t\bar{t}$, γZ , W^+W^-
 - \rightarrow unique access to \Re parts of CP-sensitive couplings!
- ⇒ Transversely polarized beams are very effective also for indirect seaches w/wo CP-violation
- \rightarrow in principle both e^- and e^+ beams polarized required!

 $egin{aligned} Nagel \ Rindani \end{aligned}$

Possible interactions: pol-dependences in general

Which effects are possible? $|M|^2 \sim \bar{v}(\lambda_{e^+}) \Gamma u(\lambda_{e^-}) \bar{u}(\lambda_{e^-}') \Gamma^\dagger v(\lambda_{e^+}')$

Interaction structure		Longitudinal		Transverse	
Г	Γ†	Bilinear	Linear	Bilinear	Linear
S	S	$\sim P_{e^-}P_{e^+}$	_	$\sim P_{e^-}^T P_{e^+}^T$	_
Р	S	_	$\sim P_{e^\pm}$	$\sim P_{e^-}^T P_{e^+}^T$	_
V,A	S	_	_	_	$\sim P_{e^\pm}^T$
T	S	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^\pm}$	$\sim P_{e^-}^T P_{e^+}^T$	
Р	Р	$\sim P_{e^-}P_{e^+}$	_	$\sim P_{e^-}^T P_{e^+}^T$	_
V,A	Р	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^\pm}$	$\sim P_{e^-}^T P_{e^+}^T$	$\sim P_{e^\pm}^T$
T	Р	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^\pm}$	$\sim P_{e^-}^T P_{e^+}^T$	
V,A	V,A	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^\pm}$	$\sim P_{e^-}^T P_{e^+}^T$	_
Т	V,A	_		_	$\sim P_{e^\pm}^T$
Т	Т	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^\pm}$	$\sim P_{e^-}^T P_{e^+}^T$	_

P, S = (pseudo)scalar A, V = (axial)vectorT = tensor

- ⇒ impact of beam polarization depends on kind of interaction(s)
- ullet with P_{e^-} and P_{e^+} much higher 'flexibility' with regard to NP candidates for direct as well as indirect searches!

The physics case for polarized e^- and e^+

- Results of the report:
 - *** many** $\equiv (n+1)$ examples from **different** physics scenarios!
- ⇒ Report should be seen as contemporary status report! still studies ongoing, new ideas+examples coming up
- ullet $P_{e^+} \Rightarrow$ only gains, independent in which direction NP points
 - * key additional observables for unraveling the underlying physics: kind of interaction, particle properties, parameter determination,...
 - * significant improvement for model-independent approaches in direct as well as indirect searches for NP
 - **★ Analyzing NP might be challenging** → best of all tools needed!
- ullet P_{e^+} crucial preparation for 'being prepared for the Unexpected'!
- \Rightarrow full potential of the ILC could only be realized with P_{e^-} and $P_{e^+}!$ expected: $P_{e^-}=\pm90\%$, $P_{e^+}=\pm60\%$ and $\Delta P_\pm/P_\pm=0.25\%$