Polarized e^- and e^+ at the ILC Summary of the Polarization Report

Gudrid Moortgat-Pick (CERN) for the POWER group

LCWS05 Stanford, 22/03/2005

1. 'Polarization talks' at LCWS05

2. Polarization report ~finished!

- \rightarrow The physics case for polarized e^- and e^+ beams
- \rightarrow Machine overview
- \rightarrow Polarimetry overview
- 3. Further news and events

Very active 'POWER' group: Polarization related talks at LCWS05

- 'Physics':
 - * 'The importance of e^+ polarization': U. Nauenberg@Susy
 - * 'Review of physics with polarized beams': N. Paver@New Physics
- 'Machine':
 - * 'Polarized e⁺ sources at the ILC': V. Bharadwaj@Accelerator
 - * 'Enhanced Fabry Perot resonators': A. Variola@Accelerator
 - * 'Status of experiment E166 at SLAC': R. Pöschl@Accelerator
 - * 'Beam dynamic simulation': W. Gai@Accelerator
 - * 'Polarized e⁺ Generation at KEK-ATF': T. Omori @Accelerator
 - * + many questions and discussion
- 'Polarimetry':
 - * 'Polarimetry for 2 IR's and downstream designs': K. Moffeit@MDI
 - * 'Upstream Compton Polarimetry': N. Meyners@MDI

⇒ Only few examples here, for details, please, look at the talks directly and also at the 'POWER report'! (www.ippp.dur.ac.uk/~gudrid/power/report.pdf)

Physics at the e^+e^- Linear Collider

- * Discovery of New Physics (NP)
 - \rightarrow Large potential for direct searches
 - \rightarrow Impressive potential also for indirect searches!
- * Unraveling the structure of NP
 - \rightarrow precise determination of underlying dynamics and parameters
 - \rightarrow model distinction through model-independent searches
- * High precision measurements
 - \rightarrow tests of the SM with unprecedented precision
 - \rightarrow even smallest hints of NP could be observed
- \Rightarrow Beam polarization = decisive tool for direct and indirect searches!

'State of the art':

Polarized e^- beam at SLAC: SLC $\sim 75\%$

 $\mathsf{E158}\sim90\%$

at Nagoya, KEK: $\sim 90\%$

new results show that $P(e^-) \sim 90\%$ can be expected at ILC!

 \Rightarrow won't such high $P(e^{-})$ suffice?

Polarization report - 'POWER Write-Up'

- The Physics case for having both beams polarized:
 - 140 pages, \sim 70 authors, \sim 30 institutes
- \rightarrow incl. 80 pages physics, 20 pages machine, 20 pages polarimetry
- \rightarrow will be submitted to Phyics Reports and to hep-ph (very soon!)
- http://www.ippp.dur.ac.uk/~gudrid/power/report.pdf
- News from physics with polarized beams in Susy, SM, other NP!
- \rightarrow focus on use of $P_{e^+}~$ compared to $P_{e^-}~$ only
- Machine overview about polarized e⁺ source and polarization measurements
- Thanks a lot to all authors!

Very special thanks to S. Riemann, P. Osland and N. Paver, R. Pitthan, P. Schüler, J. Sheppard, M. Woods!

CERN-PH-TH/2005-036 DCPT-04-100 IPPP-04-50 SLAC-PUB-xxxx

Final Draft Revealing fundamental interactions: the rôle of polarized positrons and electrons at the Linear Collider*

G. MOORTGAT-PICK^{1,10}, T. ABE¹³, G. ALEXANDER²³, B. ANANTHANARAYAN², A.A. BABICH³, V. BHARADWAJ⁶, D. BARBER⁷, A. BARTL⁴, A. BRACHMANN⁶, S. CHEN¹³, J. CLARKE⁵, J.E. CLENDENIN⁶, J. DAINTON²¹, K. DESCH²⁹, M. DIEHL⁷, B. DOBOS¹³, T. DORLAND¹³, H. EBERL⁸, J.R. ELLIS¹, K. FLOETTMANN⁷, H. FRAAS⁹, F. FRANCO-SOLLOVA⁷, F. FRANKE⁹, A. FREITAS³¹, J. GOODSON¹³, J. GRAY¹³, A. HAN¹³, S. HEINEMEYER¹, S. HESSELBACH⁴⁹, T. HIROSE²⁸, K. HOHENWARTER-SODEK⁴, J. KALINOWSKI²⁴, T. KERNREITER⁴, O. KITTEL⁹, S. KRAML¹, W. MAJEROTTO⁸, A. MARTINEZ¹³, H.-U. MARTYN³⁰, A. MIKHAILICHENKO²⁵, W. MENGES⁷, K. MOENIG⁷, K. MOFFEIT⁶, S. MORETTI¹¹, O. NACHTMANN¹², F. NAGEL¹², T. NAKANISHI¹⁵, U. NAUENBERG¹³, T. OMORI¹⁵, P. OSLAND^{1,14}, A.A. PANKOV³, N. PAVER¹⁶, R. PITTHAN⁶, W. POROD^{17,27}, J. PROULX¹³, P. RICHARDSON¹⁰, S. RIEMANN⁷, S.D. RINDANI¹⁸, T.G. RIZZO⁶, P. SCHÜLER⁷, C. SCHWANENBERGER¹⁹, D. SCOTT⁵, J. SHEPPARD⁶, R.K. SINGH², A. STAHL²², H. STEINER²⁶, A. WAGNER⁹, G. WEIGLEIN¹⁰, M. WOODS⁶, P. ZERWAS⁷, F. ZOMER²⁰

Outline of the report

a) Introduction:

* possible general dependences on beam polarization w.r.t. kind of interaction

 \star definitions and gain in accuracy for A_{LR} measurement with P_{e^+}

b) Open questions of the SM: top, Higgs, GigaZ

- $\star t$ and H couplings and properties
- ***** application of **Blondel scheme** for high precision tests

c) Searches for New Physics: Susy, CI, ED, LQ, new CP-violation,...

- * parameter determination (many!), CP-violating effects, background supp.
- * model-independent approaches in direct and indirect searches

d) Summary of the Physics cases

- ***** qualitative and quantitative improvement factors listed in short summaries
- ***** summary tables for longitudinally and transversely polarized beams

e) Technical aspects:

- \star history of polarized e^- at SLC; polarized e^- source design for ILC
- \star polarized e^+ : undulator-based schemes , comments on laser-based scheme
- ***** polarization measurement via up-/downstream polarimetry, annihilation data

Supersymmetry: Test of quantum numbers

Association of chiral electrons to scalar partners $e_{L,R}^- \leftrightarrow \tilde{e}_{L,R}^-$ and $e_{L,R}^+ \leftrightarrow \tilde{e}_{R,L}^+$

- **1.** separation of scattering (direct SM \rightarrow SUSY vertex) \leftrightarrow annihilation channel
- 2. test of 'chirality': only $\tilde{e}_R^- \tilde{e}_L^+$ may survive at $P_{e^-} > 0$ and $P_{e^+} > 0$!

\Rightarrow Even high P_{e^-} not sufficient but P_{e^+} needed!

Supersymmetry: Test of Yukawa couplings

Test of SU(2), U(1) gauge couplings \equiv SUSY Yukawa couplings

- **1.** separation of the pairs $\tilde{e}_R^- \tilde{e}_R^+$ and $\tilde{e}_R^- \tilde{e}_L^+$
- 2. 'variation' of Yukawa couplings accepted within experimental uncertainty

\Rightarrow Even high P_{e^-} not sufficient but P_{e^+} needed!

Searches for CP-violation, e.g. in SUSY (many new phases)

'Construction' of T-odd asymmetries with angular correlations

• with longitudinally pol. beams:

 P_{e^+} needed for better measurability of asymmetry $\sim |A_T| \sqrt{\mathcal{L} imes \sigma}$

• with transversely polarized beams: direct access to CP-odd asymmetries

\Rightarrow Both e^- and e^+ beams have to be polarized!

Transversely polarized beams also for indirect searches:

- Who guaranties that we will ever reach the new heavy scale?
 - \rightarrow indirect searches important!
 - \rightarrow however, strong model-dependence!
- With transversely polarized beams: exploit azimuthal asymmetries also for indirect searches!
 - a) distinction between SM and different models of large extra dimensions
 - b) access to new CP-violating kind of interactions in $t\bar{t}$, γZ , W^+W^-

Nagel Rindani

Rizzo

 \rightarrow unique access to \Re parts of CP-sensitive couplings!

⇒ Transversely polarized beams are very effective also for indirect seaches w/wo CP-violation

 \rightarrow in principle both e^- and e^+ beams polarized required!

Which effects are possible? $|M|^2 \sim \bar{v}(\lambda_{e^+})\Gamma u(\lambda_{e^-})\bar{u}(\lambda_{e^-}')\Gamma^{\dagger}v(\lambda_{e^+}')$

Interaction structure		Longitudinal		Transverse		P, S = (pseudo)scalar
Г	L_t	Bilinear	Linear	Bilinear	Linear	A.V = (axial) vector
S	S	$\sim P_{e^-}P_{e^+}$	—	$\sim P_{e^-}^T P_{e^+}^T$	—	
Р	S	_	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$	—	T=tensor
V,A	S	_	—	_	$\sim P_{e^{\pm}}^{T}$	
Т	S	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$		
Р	Р	$\sim P_{e^-}P_{e^+}$	—	$\sim P_{e^-}^T P_{e^+}^T$	—	
V,A	Р	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$	$\sim P_{e^{\pm}}^{T}$	
Т	Р	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$		
V,A	V,A	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$	_	
Т	V,A	_	—	_	$\sim P_{e^{\pm}}^{T}$	
Т	Т	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$	_	

 \Rightarrow impact of beam polarization depends on kind of interaction(s)

• with P_{e^-} and P_{e^+} much higher flexibility with regard to NP candidates for direct as well as indirect searches!

Technical aspects of polarizing e^- and e^+ at the ILC

Polarized electron source: strained photocathode technology

 $\Rightarrow P(e^-) \approx 90\%$ expected

- Positron sources under discussion for the ILC:
- * Conventional source
 - \Rightarrow no polarization
- * Undulator-based source
 - \Rightarrow polarized, > 150 GeV electrons needed
- Other schemes? Laser-based source
- Status of polarimetry
 - \Rightarrow Compton polarimetry well advanced
 - * up-, as well as downstream ILC designs under work
 - * high accuracy expected $\Delta P/P \sim 0.25\%!$ better precision requires $P_{e^+}!$

Results of the report

- clear physics case for polarized e^- and e^+
 - * many $\equiv (n+1)$ examples from different physics scenarios!
 - \star P_{e^+} always advantageous, independent of direction of NP
 - * more observables, higher flexibility, better statistics+systematics
- $\Rightarrow P_{e^+}$ crucial preparation for 'being prepared for the Unexpected'!
- ILC scheme designs well on track for $P_{e^-} = \pm 90\%$ and $P_{e^+} = \pm 60\%$ + kicker system for pulse-train-to-pulse-train \rightarrow two IR's with P_{e^\pm} \Rightarrow important also for switching $\pm P$
- possible to provide polarized beams without loss of peak luminosity and without any critical impact on commissioning!
 * long undulator, additional polarized e⁻ source for commissioning,...
- \Rightarrow details have to be decided before the final ILC design!
- designs for up-/and downstream polarimetry for the ILc \star accuracy of $\Delta P_{e^\pm}/P_{e^\pm}\sim 0.25\%$
- ⇒Report should be seen as contemporary status report! still studies ongoing, new ideas+examples coming up however, the final source design should be decided soon!

Future events related to 'Beam Polarization at the ILC'

- 'Workshop on Positron Sources for the ILC', Daresbury, April, 11-13!
 - \star Program: Polarized and unpolarized e^+ source
 - ***** Drive beams, target issues, polarimetry, capture issues, operational aspects
 - * webpage: www.astec.ac.uk/id_mag/workshop.htm
- ongoing experiment at KEK (since 2001)

* polarized e^+ from laser-compton scheme with $P_{e^+} \sim 80\%$ measured via transmission polarimetry

• First run of the project 'E166' at SLAC in May, 2005

 \Rightarrow first results hopefully soon!

- Helical undulator prototypes for ILC parameters in 2005
 - ***** Test of a SC helical undulator at Rutherford Lab already started
 - ***** Construction of a PPM helical undulator at Daresbury Lab started
- Snowmass in August 2005

Polarization session needed: detailed design comparison between conventional and undulator-based scheme, also news for laser-based scheme planned

Summary: polarized e^- and e^+ at the ILC

- With P_{e^+} only gains, independent in which direction NP points
 - * key additional observables for unraveling the underlying physics: kind of interaction, particle properties, parameter determination,...
 - * significant improvement for model-independent approaches in direct as well as indirect searches for NP
 - \star Analyzing NP might be challenging \rightarrow best of all tools needed!
- \Rightarrow full potential of the ILC could only be realized with P_{e^-} and $P_{e^+}!$
- undulator-based scheme is feasible and its design well advanced
 * some prototypes for ILC design already under construction
- To-do list: detailed designs for both conventional and undulator-based source? revisit reliability issues? cost comparison? start with conventional? polarized source as upgrade? (expect ~3% increment in ILC project cost to have both conventional and undulator-based sources)

⇒ Please, think about these questions now, i.e. in 2005, ... ! P_{e^-} only together with P_{e^+} provide a unique tool for the ILC: * high potential of applications

* and preparation for the 'Unexpected!'